
Inner Palindromic Closure?

Jürgen Dassow1, Florin Manea2, Robert Mercaş1, and Mike Müller2

1 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany,

dassow@iws.cs.uni-magdeburg.de, robertmercas@gmail.com
2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik,

D-24098 Kiel, Germany, {flm,mimu}@informatik.uni-kiel.de

Abstract. We introduce the inner palindromic closure as a new oper-
ation ♠, which consists in expanding a factor u to the left or right by
v such that vu or uv, respectively, is a palindrome of minimal length.
We investigate several language theoretic properties of the iterated inner
palindromic closure ♠∗(w) =

⋃
i≥0 ♠

i(w) of a word w.

1 Introduction

The investigation of repetitions of factors in a word is a very old topic in formal
language theory. For instance, already in 1906, Thue proved that there exists an
infinite word over an alphabet with three letters which has no factor of the form
ww. Since the eighties a lot of papers on combinatorial properties concerning
repetitions of factors were published (see [17] and the references therein).

The duplication got further interest in connection with its importance in
natural languages [16] and in DNA sequences and chromosomes [18]. Motivated
by these applications, grammars with derivations consisting in “duplications”
(more precisely, a word xuwvy is derived to xwuwvy or xuwvwy under certain
conditions for w, u, and v) were introduced. We refer to [5, 13].

Combining the combinatorial, linguistic and biological aspect, it is natural
to introduce the duplication language D(w) associated to a word w ∈ Σ+,
which is the language containing all words that double some factor of w, i. e.,
D(w) = {xuuy | w = xuy, x, y ∈ Σ∗, u ∈ Σ+} and its iterated version D∗(w) =⋃
i≥0D

i(w). In the papers [1, 4, 6, 19], the regularity of D∗(w) was discussed; for
instance, it was shown that, for any word w over a binary alphabet, D∗(w) is
regular and that D∗(abc) is not regular. Further results on iterated duplication
languages can be found in [10]. Also the case of bounded duplication, i. e., the
length of the duplicated word is bounded by a constant, was studied, [11].

It was noted that words w containing hairpins, i. e., w = xuyh(uR)z, and
words w with w = xuy and u = h(uR), where uR is the mirror image of u and
h is a letter-to-letter isomorphism, are of interest in DNA structures (see [8,
9], where the Watson-Crick complementarity gives the isomorphism). Therefore,
operations leading to words with hairpins as factors were studied (see [2, 3]).

? The work of Florin Manea and Mike Müller is supported by the DFG grant 582014.
The work of Robert Mercaş is supported by Alexander von Humboldt Foundation.

2 Dassow, Manea, Mercaş, Müller

In this paper, we consider the case where the operation leads to words which
have palindromes (words with w = wR) as factors (which is a restriction to the
identity as the isomorphism). An easy step would be to obtain xuuRy from a
word xuy in analogy to the duplication. But then all newly obtained palindromes
are of even length. Thus it seems to be more interesting to consider the palin-
drome closure defined by de Luca [12]. Here a word is extended to a palindrome
of minimal length. We allow this operation to be applied to factors and call it
inner palindromic closure. We also study the case of iterated applications and a
restriction bounding the increase of length.

The paper is organised as follows: After some preliminaries given in the fol-
lowing, we define the new operation, inner palindromic closure, and its versions
in Section 2, where we also give some simple properties. In Sections 3 and 4,
we discuss the regularity of the sets obtained by the inner palindromic closures.
Finally, we present some language classes associated with the new operation.

Basic definitions. For more details on the concepts we define here see [17].
A set M ⊆ INm of vectors is called linear, if it can be represented as

M = {B +
∑n
i=1 αiAi | αi ∈ IN, 1 ≤ i ≤ n}

for some vectors B and Ai, 1 ≤ i ≤ n. It is called semi-linear if it can be
represented as a finite union of linear sets.

An alphabet Σ is a non-empty finite set with the cardinality denoted by ‖Σ‖,
and the elements called letters. A sequence of letters constitute a word w ∈ Σ∗,
and we denote the empty word by ε. The set of all finite words over Σ is denoted
by Σ∗, and any subset of it is called a language. Moreover, for a language L, by
alph(L) we denote the set of all symbols occurring in words of L.

If w = u1v1u2v2 . . . unvn and u = uiui+1 . . . uj for 1 ≤ i ≤ j ≤ n, we say
that u is a scattered factor of w, denoted as u 4 w. Consider now vk = ε for all
1 ≤ k ≤ n. We say that u is a factor of w, and, if i = 1 we call u a prefix. If
j = n we call u a suffix. Whenever i > 1 or j < |w|, the factor u is called proper.

The length of a finite word w is the number of not necessarily distinct symbols
it consists of, and is denoted by |w|. The number of occurrences of a certain
letter a in w is designated by |w|a. The Parikh vector of a word w ∈ Σ∗,
denoted by Ψ(w), is defined as Ψ(w) = 〈|w|a1 , |w|a2 , . . . , |w|a‖Σ‖〉, where Σ =
{a1, a2, . . . , a‖Σ‖}. A language L is called linear or semi-linear, if its set of Parikh
vectors is linear or semi-linear, respectively.

For i ≥ 0, the i-fold catenation of a word w with itself is denoted by wi and
is called the ith power of w. When i = 2, we call the word w2 = ww a square.

For a word w ∈ Σ∗, we denote its mirror image (or reversal) by wR and say
that w is a palindrome if w = wR. For a language L, let LR = {wR | w ∈ L}.

We say that a language L is dense, if, for any word w ∈ Σ∗, Σ∗wΣ∗ ∩ L is
non-empty, i. e., each word occurs as a factor in L.

We recall Higman’s Theorem.

Theorem 1 (Higman [7]). If L is a language with the property that no word
is a scattered factor of another one, then L is finite.

Inner Palindromic Closure 3

2 Definitions and preliminary results

We now look at a word operation due to de Luca [12], which considers ex-
tensions to the left and right of words such that the newly obtained words are
palindromes.

Definition 1. For a word u, the left (right) palindromic closure of u is a word
vu (uv) which is a palindrome for some non-empty word v such that any other
palindromic word having u as proper suffix (prefix) has length greater than |uv|.

Here the newly obtained words have length greater than the original one, but
minimal among all palindromes that have the original word as prefix or suffix.

As for duplication and reversal, we can now define a further operation.

Definition 2. For a word w, the left (right) inner palindromic closure of w is
the set of all words xvuy (xuvy) for any factorisation w = xuy with possibly
empty x, y and non-empty u, v, such that vu (uv) is the left (right) palindromic
closure of u. We denote these operations by ♠`(w) and ♠r(w), respectively, and
define the inner palindromic closure ♠(w) as the union of ♠`(w) and ♠r(w).

The operation is extended to languages and an iterated version is introduced.

Definition 3. For a language L, let ♠(L) =
⋃
w∈L♠(w). We set ♠0(L) = L,

♠n(L) = ♠(♠n−1(L)) for n ≥ 1, ♠∗(L) =
⋃
n≥0♠n(L). Any set ♠n(L) is called

a finite inner palindromic closure of L, and we say that ♠∗(L) is the iterated
inner palindromic closure of L.

We start with a simple observation.

Lemma 1. For every word w, if u ∈ ♠∗(w), then w 4 u.

Remark 1. Obviously, for any language L, ♠∗r(L) ⊆ ♠∗(L) and ♠∗` (L) ⊆ ♠∗(L).
In general, allowing both left and right operations is stronger than allowing
them only in one direction. To see this we consider L = {ax | x /∈ a∗}. The lan-
guage ♠∗r(L) contains only words of the form ay with x 4 y, while the language
♠∗` (LR) contains only words of the form y′a with xR 4 y′. This is not the case
of the languages obtained by the application of ♠, since we can insert either
before or after the letter a a letter b 6= a. Thus, ♠∗(L) and ♠∗(LR) also contain
words starting and ending with b 6= a, respectively. Hence ♠∗r(L) (♠∗(L) and
♠∗` (LR) (♠∗(LR). /

The next results are in tone with the ones from [10, Proposition 3.1.1]:

Proposition 1. For any semi-linear (linear) language, its iterated inner palin-
dromic closure is semi-linear (respectively, linear).

Since each word is described by a linear set, as consequence of the above we
get the following assertion.

4 Dassow, Manea, Mercaş, Müller

Corollary 1. For any word, its iterated inner palindromic closure is linear.

Furthermore, we have the following result. We omit its proof as it follows
similarly to Proposition 3.

Proposition 2. For any word w, the language ♠∗(w) is dense with respect to
the alphabet alph(w).

We mention that Proposition 2 does not hold for languages. This can be seen
from L = {ab, ac}. Obviously, any word in ♠∗(L) contains only a and b or only
a and c. Therefore abc ∈ Σ∗ is not a factor of any word in ♠∗(L).

Lemma 2. Let Σ = {a1, a2, . . . , ak} and define the recursive sequences

w′0 = ε and w0 = ε,

w′i = wi−1w
′
i−1 and wi = w′iai for 1 ≤ i ≤ k.

Then for 1 ≤ i ≤ k, alph(wi)
∗wi ⊆ ♠∗(wi).

Proof. Note that, for 0 ≤ j < i ≤ k, w′i is a palindrome and wj is a proper
prefix of wi. We want to generate b1b2 . . . bnwi with b` ∈ alph(wi) for 1 ≤ ` ≤ n.
Let b1 = aj . Since wj is a prefix of wi, wi = w′jajv for some v. Since w′j is a
palindrome, we obtain ajw

′
jajv = b1wi by an inner palindromic closure step. The

conclusion follows after performing the procedure in succession for b2, . . . , bn. ut

We now define a variant of the inner palindromic closure, where we restrict
the length of the words which are involved in the palindromic closure. First we
introduce a parametrised version of the palindromic closure operation from [12].

Definition 4. For a word u and integers m ≥ 0 and n > 0, we define the sets

Lm,n(w) = {u | u = uR, u = xw for x 6= ε, |x| ≥ n, m ≥ |w| − |x| ≥ 0},
Rm,n(w) = {u | u = uR, u = wx for x 6= ε, |x| ≥ n, m ≥ |w| − |x| ≥ 0}.

The left (right) (m,n)-palindromic closure of w is the shortest word of Lm,n(w)
(resp., Rm,n(w)), or undefined if Lm,n(w) (resp., Rm,n(w)) is empty.

The idea behind this new definition is that an element of Lm,n(w) is a palin-
drome u obtained by extending the word w by adding a prefix x of length at
least n such that the centre of the newly obtained palindrome u is inside the
prefix of length dm2 e of w. That is, u = xvvRxR where n ≤ |x|, 2|v| ≤ m, and
w = vvRxR, or u = xvavRxR, where n ≤ |x|, 2|v| + 1 ≤ m, and w = vavRxR.
The left (m,n)-palindromic closure is the shortest such word u, obtained when
the shortest v is chosen. The right (m,n)-palindromic closure is defined similarly.

We briefly describe the restrictions imposed by (m,n) on the left palindromic
closure (similar explanations hold for the right variant). By (classical) left palin-
dromic closure we added some letters to the left of a word that had a palindromic
prefix to transform the entire initial word into a palindrome of minimal length.
For the left (m,n)-palindromic closure we require that at least n letters should
be added and that the palindromic prefix should not be longer than m.

We define now the parametrised version of the inner palindromic closure.

Inner Palindromic Closure 5

Definition 5. For non-negative integers n,m with n > 0, we define the ♠(m,n)

one step inner palindromic closure of some word w as

♠(m,n)(w) ={u | u = xy′z, w = xyz, and

y′ is obtained by left or right (m,n)−palindromic closure from y}.

This notion can be easily extended to languages, while its iterated version
♠∗(m,n) is defined just as in the case of the inner palindromic closure.

Remark 2. Note that Lm,n(w) and Rm,n(w) are empty if and only if |w| < n;
otherwise, Lm,n(w) contains at least the word wRw and Rm,n(w) contains the
word wwR. Therefore, Lm,n(w) and Rm,n(w) are either both empty or both
non-empty; clearly, both sets are always finite.

Also, the length of the left (right) (m,n+j)-palindromic closure of w is greater
or equal than both the length of the left (right) (m+i, n+j)-palindromic closure
of w and the length of the left (right) (m,n)-palindromic closure of w for i, j > 0.

If |w| < n, then ♠(m,n)(w) = ∅. Further, if |w| = n then ♠(m,n)(w) =
{wRw,wwR}. Generally, for |w| ≥ n, we have that ♠(m,n)(w) 6= ∅. Finally, it is
not hard to see that ♠(w) = ♠(|w|,1)(w). /

A statement similar to Proposition 2 also holds for the bounded operation.

Proposition 3. For any word w with |w| ≥ n and positive integer m, the lan-
guage ♠∗(m,n)(w) is dense with respect to the alphabet alph(w).

Proof. We note that if u is a prefix of length at least n of w and u ends with
a then there is a word w′ starting with a in ♠(m,n)(w). If the letter a appears
only in the prefix of length n−1 of w, then we do as follows. Let w0 = w and let
wi+1 the word obtained by left (m,n)-palindromic closure from wi for i ≥ 0. As
wi is a proper suffix of wi+1, there exists ia such that wia has a prefix of length
at least n that ends with a. Continuing this process, we derive a word w′ that
for each letter s ∈ alph(w) has a prefix of length at least n ending with s.

Suppose we want to generate a word starting with a1 · · · an by inner (m,n)-
palindromic closure from w. First, we generate w′ and let v0 = w′. By the above,
v0 = x1a1y1 for some |x1| ≥ n − 1. Then, applying a left (m,n)-palindromic
closure to x1a1 (which produces a word from the inner (m,n)-palindromic closure
of v0) we obtain from v0 a palindrome a1v1, where v1 has v0 as a proper suffix.
Thus, v1 also has prefixes of length greater than n that end with every letter in
alph(w). Next, to generate the word a1a2v2 from a1v1 = a1x2a2y2 we apply a
left (m,n)-palindromic closure operation to x2a2. The process is repeated until
we generate the word a1 · · · anvn. ut

The next result is related to Proposition 3 and will be useful in the sequel.

Lemma 3. Let Σ be an alphabet with ||Σ|| ≥ 2, a /∈ Σ, and m and n positive
integers. Let w = amy1a · · · yp−1ayp be a word such that alph(w) = Σ ∪ {a},
m, p > 0, yi ∈ Σ∗ for 1 ≤ i ≤ p, |y1| > 0, and such that there exists 1 ≤ j ≤ p
with |yj | ≥ n. Then, for each v ∈ Σ∗ with |v| ≥ n, there exists w′ ∈ ♠∗(m,n)(w)

such that v is a prefix of w′ and |w′|a = |w|a.

6 Dassow, Manea, Mercaş, Müller

Proof. As a first step, for a word z = z1az2a · · · azk, where a /∈
⋃

1≤i≤k alph(zi)

and |z1| ≥ n, we define z′1 = z1 and z′i = (z′i−1)Rzi for 1 < i ≤ k. Let z′ =
z′1a · · · az′k. It is immediate that z′ ∈ ♠∗(m,n)(z), as it is obtained by applying

iteratively right (m,n)-palindromic closure to the factors z′ia to get z′ia(z′i)
R, for

i > 0. Moreover, alph(z′k) =
⋃

1≤i≤k alph(zi) and |z′i| ≥ n for all 1 ≤ i ≤ k.

As a second step, for a word v = v`av`−1a · · · av1, where a /∈
⋃

1≤i≤` alph(vi)

and |v1| ≥ n, we define v′1 = v1 and v′i = vi(v
′
i−1)R for 1 < i ≤ `. Let v′ =

v′`a · · · av′1. It is immediate that v′ ∈ ♠∗(m,n)(v), as it can be obtained by applying

iteratively left (m,n)-palindromic closure to the factors av′i to obtain (v′i)
Rav′i

R
,

for i > 0. Moreover, alph(y′`) =
⋃

1≤i≤k alph(yi) and |y′i| ≥ n for all 1 ≤ i ≤ `.
Now we consider the word w from our hypothesis. We apply the first step de-

scribed above to the factor yjayj+1 · · · ayp to obtain y′ja · · · ay′p, where alph(y′p) =⋃
j≤i≤p alph(y′i) and |y′p| ≥ n. Afterwards, we apply the second step procedure

to the factor y1ay2a · · · ayj−1ay′ja · · · ay′p to obtain y′′1ay
′′
2a · · · ay′′j−1ay′′j a · · · ay′′p ,

where alph(y′′1) =
⋃

1≤i≤p alph(yi) = Σ and |y′′1 | ≥ n. Accordingly, w′′ =
amy′′1ay

′′
2a · · · ay′′p ∈ ♠∗(m,n)(w).

Now, for a word v ∈ Σ∗ we obtain the word w′′v = amvRyva · · · y′′pa from w′′,
for some yv ∈ Σ∗, just like in the proof of Proposition 3. If |v| ≥ n, we can obtain
from w′′v the word vw′′v by applying to amvR a left (m,n)-palindromic closure to
get vamvR. This concludes our proof. ut

3 On the regularity of the inner palindromic closure

We start with some facts on words over a binary alphabet.

Lemma 4. [Propagation rule] For a word w = ambn with positive integers m
and n, the set ♠(w) contains all words of length m+n+1 with a letter x ∈ {a, b}
inserted before or after any letter of w.

Proof. To see this, assume we want to insert a letter a somewhere in w (the case
of the insertion of a letter b is symmetric). To insert a between positions j and
j + 1 with j < m we just take the palindromic prefix am−j and perform a ♠`
step on it. This results in the word am−j+1 which fulfils the conditions. When
m ≤ j ≤ m+ n, we perform a ♠r step on the word abj−m, which produces the
palindrome abj−ma. ut

As a consequence of the Propagation Rule, we can show that the necessary
condition given in Lemma 1 is also sufficient in the case of binary alphabets.

Corollary 2. For any binary words w and u, w 4 u if and only if u ∈ ♠∗(w).

Proof. By Lemma 1, we have that w 4 u for all u ∈ ♠∗(w). Using Lemma 4, all
words u with w 4 u are in fact in ♠∗(w) since in each of them we can insert a’s
and b’s at arbitrary positions. ut

Inner Palindromic Closure 7

For the duplication operation, Bovet and Varricchio [1] showed that for
any binary language, its iterated duplication completion always gives a regular
language. For the inner palindromic closure operation on such alphabets, the
result is similar.

Theorem 2. The iterated inner palindromic closure of a language over a binary
alphabet is regular.

Proof. According to Theorem 1, for a language L there exists a finite set L0 with
L0 ⊆ L such that for every word w ∈ L there is a word w0 ∈ L0 with w0 4 w.
By Corollary 2, it follows that ♠∗(L) is the union of the sets SW (w0) = {w′ ∈
alph(w0)∗ | w0 4 w′}, for all w0 ∈ L0. As all the sets SW (w0) are regular, it
follows that ♠∗(L) is regular. ut

It is obvious that the finite inner palindromic closure of some finite language is
always regular, since at each step we only obtain words which have at most twice
the length of the longest word in the given language. However, when considering
the entire class of regular languages the result is not necessarily regular.

Theorem 3. The finite inner palindromic closure of a regular language is not
necessarily regular.

Proof. We take a positive integer k and a language L = c1a
+
1 c2a

+
2 . . .cka

+
k b. We

intersect ♠k(L) with the language given by the regular expression:

c1a
+
1 c2a

+
2 . . .cka

+
k b(a

+
k ck. . .a

+
2 c2a

+
1 c1)(a+k ck. . .a

+
3 c3a

+
2 c2). . .(a+k cka

+
k−1ck−1)a+k ck

It is not hard to see that in any word of the intersection the number of ai’s in
every maximal unary group adjacent to ci is the same. Since this is a non-regular
language and regular languages are closed under intersection, we conclude. ut

It remains an open problem whether or not the iterated inner palindromic
closure of a regular language L, where ‖alph(L)‖ ≥ 3, is also regular.

We mention that the non-regularity of ♠∗(L) with ‖alph(L)‖ ≥ 3 cannot
be obtained by a strategy similar to that by Wang [19], who showed the non-
regularity of D(L) with ‖alph(L)‖ ≥ 3. There, the non-regularity of D(L) comes
as a consequence of a padding that needs to be added every time we want to
construct a longer word as result of consecutive applications of our chosen rule.
Consider now the word abc and the language (abc)∗ that contains no palindromes
of length greater than one. However, babc ∈ ♠(abc), thus by Lemma 2 we can
generate at the beginning as many abc’s as we want, (abc)∗babc. Hence, we
cannot use any more the argument that each palindromic step creates some extra
padding at the end of the word whenever we investigate words that contain no
palindromes.

4 Parametrised inner palindromic closure

We now discuss the regularity of ♠∗(m,n)(w). Before we state our results, we
establish two facts on the avoidance of patterns.

8 Dassow, Manea, Mercaş, Müller

Theorem 4. There exist infinitely long binary words avoiding both palindromes
of length 6 and longer, and squares of words with length 3 and longer.

Proof. Rampersad et al. [15] constructed an infinite word w, that is square-free
and has no factors from the set {ac, ad, ae, bd, be, ca, ce, da, db, eb, ec, aba, ede}.

We can show that the morphism γ, defined by

γ(a) = abaabbab, γ(b) = aaabbbab, γ(c) = aabbabab,

γ(d) = aabbbaba, γ(e) = baaabbab,

maps this word w to a word with the desired properties.
As any palindrome of length n > 2 contains a shorter palindrome of length n−

2, a word avoiding palindromes of lengths 6 and 7 also avoids longer ones. Also,
each palindrome of length 6 or 7 would occur in the image of some word of length
2. We see that no such palindromes occur in γ({ab, ba, bc, cb, cd, dc, de, ea, ed}),
therefore neither in γ(w). We show that γ(w) contains no squares other than
aa, bb, abab and baba by applying methods used in [15]. ut
Theorem 5. There exist infinitely long ternary words avoiding both palindromes
of length 3 and longer, and squares of words with length 2 and longer.

Proof. We claim that the morphism ψ, that is defined by

ψ(a) = abbccaabccab, ψ(b) = bccaabbcaabc, ψ(c) = caabbccabbca,

maps all infinite square-free ternary words h to words with the desired properties.
We see that ψ(h) does not contain palindromes of length 3 or 4, since those

would occur inside ψ(u) for some square-free word u of length 2. We check that
there are no squares other than aa, bb and cc in ψ(h) using standard tools. ut

In the sequel, we exhibit a method to construct words whose iterated inner
(m,n)-palindromic closure is not regular, for positive integers m,n. We first
establish several notations. We associate to an integer k ≥ 2 a pair of numbers
(pk, qk) if there exists an infinite word over a k-letter alphabet avoiding both
palindromes of length greater or equal to qk and squares of words of length
greater or equal to pk. If more such pairs exist, we take (pk, qk) to be any of them.

Theorem 6. Let m > 0 and k ≥ 2 be two integers and define n = max{ qk2 , pk}.
Let Σ be a k-letter alphabet with a /∈ Σ and w = amy1ay2 · · · ayr−1ayr be a word
such that alph(w) = Σ ∪ {a}, r > 0, yi ∈ Σ∗ for all 1 ≤ i ≤ r, and there exists
j with 1 ≤ j ≤ r and |yj | ≥ n. Then ♠∗(m,n)(w) is not regular.

Proof. Let α be an infinite word over Σ that avoids palindromes of length qk and
squares of words of length pk. Note that due to Lemma 3, for each prefix u of α
longer than n, there exists wu with |wu|a = r−1 such that uamwu ∈ ♠∗(m,n)(w).

We analyse how the words uamv with u being a prefix of α and |v|a =
r − 1 are obtained by iterated (m,n)-palindromic closure steps from w. As u
contains no a’s, no squares of words of length pk, as well as no palindromes with
length greater than qk, and the application of an (m,n)-palindromic closure step
introduces a palindrome in the derived word, we get that the only possible cases
of application of the operation in the derivation of uamv are the following:

Inner Palindromic Closure 9

(1) v = xyz and y is the (m,n)-palindromic closure of y′ (implicitly, |y′| < |y|
and |y|a = |y′|a); in this case we have that uamv is in ♠(m,n)(ua

mxy′z).
(2) u = u′x, v = yz, and xamy is the (m,n)-palindromic closure of amy (implic-

itly, x = yR and neither x nor y contain any a’s); in this case we have that
uamv is in ♠(m,n)(u

′amyz).
(3) u = xyz and y is the (m,n)-palindromic closure of y′ (implicitly, |y′| < |y|

and y′ contains no a’s); in this case we have that uamv is in ♠(m,n)(xy
′zamv).

Since we only apply (m,n)-palindromic closure operations, and the word we
want to derive has the form uamv with |amv|a = |w|a, it is impossible to apply
any palindromic closure step that adds to the derived word more a symbols or
splits the group am that occurs at the beginning of w. Intuitively, the palindromic
closure operations that we apply are localised, due to the restricted form of the
operation: they either occur inside u, or inside v, or are centred around am.

Moreover, by choosing n ≥ qk
2 if at any step we apply a palindromic closure

operation of the type (3) above, then the final word u contains a palindrome of
length greater than qk. To see this, we assume, for the sake of a contradiction,
that such an operation was applied. Then, we look at the last operation of this
kind that was applied. Obviously, none of the operations of type (1) or (2) that
were applied after that operation of type (3) could have modified the palindrome
of length at least qk introduced by it in the derived word before am. Therefore,
that palindrome would also appear in u, a contradiction.

This means that all the intermediate words obtained during the derivation
of uamv from w have the form u′amv′ where u′ is a prefix (maybe empty) of α
and v′ has exactly |w|a −m symbols a. We now look at the kind of operations
that can be applied to such a word. In particular, we note that we cannot have
more than |v′| − n consecutive derivation steps in which the length of the word
occurring after the first sequence of a’s is preserved. In other words, we can apply
at most |v′| − n consecutive operations that fall in the situation (2).

Indeed, after ` such derivation steps one would obtain from u′amv′ a word
u′v1 · · · v`amv′ where vRi is a prefix of v′ and |vi| ≥ n for every 1 ≤ i ≤ `. Assume,
for the sake of a contradiction, that ` > |v′| − n. Then, there exists j such that
1 ≤ j < ` and |vj | ≥ |vj+1|. Therefore, u′v1 · · · v` contains a square of length at
least 2n ≥ 2pk. But such a square will remain in the derived word for the rest
of the derivation, as neither an operation of type (1) nor one of type (2) could
introduce letters inside it. Another contradiction with the form of u is reached.

We use this last remark to show by induction on the number of steps in the
derivation, that if u is a finite prefix of α and uamv ∈ ♠∗(m,n)(w), then |u| ≤ |v|3.

If the derivation has one step, then the statement we want to show holds
trivially, as the fact that the prefix u can be added to w implies that |u| ≤ |y1|.

Let us now assume that it holds for words obtained in at most k derivation
steps, and show it for words obtained in k+1 derivation steps. If the last applied
step to obtain uamv is of type (1), then we obtained uamv from uamv′ for
some v′ shorter than v. From the induction step we have that |u| ≤ |v′|3, and,
consequently, |u| ≤ |v|3. According to the last made remark, we have that at
most the last |v| − n consecutive steps applied were of type (2). In these steps,

10 Dassow, Manea, Mercaş, Müller

the length of u increased by at most
∑
n≤i≤|v| i ≤

|v|(|v|+1)
2 . Therefore, we get

|u| − |v|(|v|+1)
2 ≤ (|v| − 1)3; hence |u| ≤ |v|3. This concludes our induction proof.

We now show that the language

L = {uamv ∈ ♠∗(m,n)(w) | |u| ≥ n, |v|a = r − 1}

is not regular. Since this language is obtained from ♠∗(m,n)(w) by intersection

with a regular language, if L is not regular, then ♠∗(m,n)(w) is not regular either.

We consider a word u0a
mv0 ∈ L such that u0 is a prefix of α with |u0| ≥ n;

clearly, L contains such a word. As we have shown above, |u0| ≤ |v0|3. We now
take a prefix u1 of α with |u1| > |v0|4; it follows that u1a

mv0 /∈ L, thus u0 and
u1 are in different equivalence classes with respect to the syntactic congruence
defined by the language L. However, by the considerations made at the beginning
of this proof, there exists v1 such that u1a

mv1 ∈ L. In the exact same manner
we construct a word u2, that is in a different equivalence class with respect to
the syntactic congruence defined by the language L than both u0 and u1, and so
on. This means we have an infinite sequence (ui)i≥0 where any two elements are
in different equivalence classes with respect to the syntactic congruence defined
by the language L. Thus, the syntactic congruence defined by L has an infinite
number of equivalence classes, so L cannot be regular, and we conclude the
proof. ut

The following theorem follows immediately from the previous results.

Theorem 7. Let w = apy1a · · · yr−1ayr, where a /∈ alph(yi) for 1 ≤ i ≤ r.
(1) If ‖alph(w)‖ ≥ 3 and |yj | ≥ 3 for some 1 ≤ j ≤ r, then for every positive
integer m ≤ p we have that ♠∗(m,3)(w) is not regular.

(2) If ‖alph(w)‖ ≥ 4 and |yj | ≥ 2 for some 1 ≤ j ≤ r, then for every positive
integer m ≤ p we have that ♠∗(m,2)(w) is not regular.

(3) If ‖alph(w)‖ ≥ 5, then for every positive integer m ≤ p we have that
♠∗(m,1)(w) is not regular.

(4) For every positive integers m and n there exists u with ♠∗(m,n)(u) not regular.

Proof. By Theorems 4 and 5 we can take q2 = 6 and p2 = 3, respectively, q3 = 3
and p3 = 2. Therefore, if we take n = 3, or n = 2, respectively, in the hypothesis
of the theorem, then the results (1) and (2) follow for any positive m ≤ p.

The third statement follows from [14, Theorem 4.15], where an infinite word
avoiding both squares and palindromes is constructed. Thus, we can take pk =
qk = 1, so n can be also taken to be 1. Finally, (4) is a consequence of (3). ut

In general, the regularity of the languages ♠∗(m,n)(w) for positive integers m

and n, and binary words w, |w| ≥ n, is left open. We only show the following.

Theorem 8. For any word w ∈ {a, b}+ and integer m ≥ 0, ♠∗(m,1)(w) is regular.

Proof. Due to the lack of space the technical details are skipped.
The general idea of the proof is to give a recursive definition of ♠∗(m,1)(w).

That is, ♠∗(m,1)(w) is expressed as a finite union and concatenation of several

Inner Palindromic Closure 11

languages ♠∗(m,1)(w
′), with |w′| < |w|, and some other simple regular languages.

To this end, we let x 6= y ∈ {a, b} and identify a series of basic cases for which
such a definition can be given easily: words that have no unary factor longer than
m, words of the form xyqx, and, finally, words of the form xyq or yqx. Building
on these basic ingredients, we define ♠∗(m,1)(w) for every word w by, basically,
identifying a prefix of w that has one of these forms, separating it from the rest,
and then computing, recursively, the iterated closure of the rest of the word.

In order to make this strategy work, one has to implement several steps. The
first is to note that if a word w has no maximal unary factor longer than m,
then ♠∗(m,1)(w) contains all words that have w as scattered factor.

Further, if uvxypxvR ∈ ♠(m,1)(uvxy
q) for q ≤ p, then we can find a sort of

normal-form derivation of uvxypxvR by first deriving uvxypx in one step, and
then appending any suffix (in particular vR) by a process similar to propaga-
tion. Similar arguments hold when the factor is prefixed by palindromic closure.
Intuitively, we can split the derivation of a word in separate parts and apply
our operations only to maximal unary factors and the symbols that bound them
(factors of the type xyqx, yqx, and xyq, with the last two as suffixes or prefixes).

Next, the derivation of these basic factors on which the operation is applied
can be further normalised. The basic idea is, intuitively, that whenever we start
a derivation of a factor xyqx, the first step that we should make is to split
the group of y’s in two smaller groups, and continue to derive each of them
separately. More precisely, if x`1yh1x`2yh2x`3 ∈ ♠∗(m,1)(xy

qx) for some positive
integers `1, `2, `3, h1, and h2, then there exist positive integers p, r < q such
that x`1yh1x`2yh2x`3 ∈ ♠∗(m,1)(xy

pxyrx) and one of the following holds: p ≤ m
or r ≤ m and p = q − r; or, m < p, r, and p = m + 2k and r = q −m − k, or,
vice-versa, r = m+ 2k and p = q −m− k, for some k > 0.

Similarly, when we start a derivation from a group xyq, we first split the
group of y’s into xypx and xyr, with r < q, and then apply the above definition
to these and repeat the process. Clearly, at every step we can lengthen the words
by pumping x’s in a group of x’s, and by generating {a, b}∗xy{a, b}∗ from xy.

Using all the above, we can now find recursively the formula for ♠∗(m,1)(w)
by first separating a prefix having one of the basic forms, derive a word from it
as we described, and then work, recursively, on the remaining suffix. ut

5 Final remarks

Apart from solving the open problems stated in this article, the study of classes
of languages obtained through these operations seems interesting to us. The
following initial results show several possible directions for such investigations.

For a class L of languages, we set LR = {LR | L ∈ L}, and for a natural
number k ≥ 1, we define Lk = {L ∈ L | ‖alph(L)‖ = k}. Consider the classes

P♠` = {L′ | L′ = ♠∗` (L) for some L}
P♠r = {L′ | L′ = ♠∗r(L) for some L}
P♠ = {L′ | L′ = ♠∗(L) for some L}

12 Dassow, Manea, Mercaş, Müller

Straightforward, for every language L, ♠r(L) = (♠`(LR))R and ♠∗r(L) =
(♠∗` (LR))R hold (for both operations the propagation rule works in only one
direction). Thus, we immediately get P♠r = (P♠`)R and P♠` = (P♠r)R.

The following result is a consequence of Remark 1.

Lemma 5. The classes P♠r \ P♠ and P♠` \ P♠ are both not empty.

When we consider only binary alphabets, we have the following statement.

Proposition 4. (P♠)2 ((P♠r)2 = (P♠`)R2 and (P♠)2 ((P♠`)2 = (P♠r)R2 .

References

1. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet
generated by copying systems. Inf. Process. Lett. 44, 119–123 (1992)

2. Cheptea, D., Mart́ın-Vide, C., Mitrana, V.: A new operation on words suggested
by DNA biochemistry: Hairpin completion. Trans. Comput. pp. 216–228 (2006)

3. Dassow, J., Holzer, M.: Language families defined by a ciliate bio-operation: hier-
archies and decision problems. Int. J. Found. Comput. Sci. 16(4), 645–662 (2005)

4. Dassow, J., Mitrana, V., Păun, G.: On the regularity of duplication closure. Bulletin
of the EATCS 69, 133–136 (1999)

5. Dassow, J., Mitrana, V., Salomaa, A.: Context-free evolutionary grammars and
the structural language of nucleic acids. BioSystems 43, 169–177 (1997)

6. Ehrenfeucht, A., Rozenberg, G.: On regularity of languages generated by copying
systems. Discrete Appl. Math. 8, 313–317 (1984)

7. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
3(2), 326–336 (1952)

8. Kari, L., Konstantinides, S., Losseva, E., Sosik, P., Thierrin, G.: Hairpin structures
in DNA words. In: DNA 2005. LNCS, vol. 3892, pp. 158–170. Springer (2006)

9. Kari, L., Mahalingam, K.: Watson–Crick palindromes in DNA computing. Natural
Computing 9(2), 297–316 (2010)

10. Leupold, P.: Languages Generated by Iterated Idempotencies. Ph.D. thesis, Uni-
veritat Rovira y Virgili, Tarragona, Spain (2006)

11. Leupold, P., Mitrana, V.: Uniformly bounded duplication codes. RAIRO Theor.
Inf. Appl. 41, 411–427 (2007)

12. de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics.
Theor. Comput. Sci. 183, 45–82 (1997)

13. Mart́ın-Vide, C., Păun, G.: Duplication grammars. Acta Cybernet. 14, 151–164
(1999)

14. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les
mots. Discrete Appl. Math. 7, 297–311 (1984)

15. Rampersad, N., Shallit, J., Wang, M.W.: Avoiding large squares in infinite binary
words. Theor. Comput. Sci. 339(1), 19–34 (2005)

16. Rounds, W., Ramer, A.M., Friedman, J.: Finding natural languages a home in for-
mal language theory. In: Mathematics of Languages. pp. 349–360. John Benjamins,
Amsterdam (1987)

17. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer-Verlag New
York, Inc. (1997)

18. Searls, D.: The computational linguistics of biological sequences. In: Artificial In-
telligence and Molecular Biology. pp. 47–120. AAAI Press, Cambridge (1993)

19. Wang, M.W.: On the irregularity of the duplication closure. Bulletin of the EATCS
70, 162–163 (2000)

