
39

Pattern Matching with Variables: Efficient Algorithms and
Complexity Results∗

HENNING FERNAU, Fachbereich IV – Abteilung Informatikwissenschaften, Universität Trier, Germany

FLORIN MANEA, Göttingen University, Institute of Computer Science, Germany

ROBERT MERCAŞ, Loughborough University, Department of Computer Science, United Kingdom

MARKUS L. SCHMID, Fachbereich IV – Abteilung Informatikwissenschaften, Universität Trier, Germany

A pattern α (i. e., a string of variables and terminals) matches a wordw , ifw can be obtained by uniformly

replacing the variables of α by terminal words. The respective matching problem, i. e., deciding whether or

not a given pattern matches a given word, is generally NP-complete, but can be solved in polynomial-time

for restricted classes of patterns. We present efficient algorithms for the matching problem with respect to

patterns with a bounded number of repeated variables and patterns with a structural restriction on the order of

variables. Furthermore, we show that it is NP-complete to decide, for a given number k and a wordw , whether

w can be factorised into k distinct factors. As an immediate consequence of this hardness result, the injective

version (i. e., different variables are replaced by different words) of the matching problem is NP-complete even

for very restricted clases of patterns.

CCS Concepts: • Theory of computation → Problems, reductions and completeness; Parameterized

complexity and exact algorithms; •Mathematics of computing → Discrete mathematics.

Additional Key Words and Phrases: Combinatorial pattern matching, combinatorics on words, patterns with

variables, NP-complete string problems

ACM Reference Format:
Henning Fernau, Florin Manea, Robert Mercaş, and Markus L. Schmid. 2010. Pattern Matching with Variables:

Efficient Algorithms and Complexity Results. ACM Trans. Web 9, 4, Article 39 (March 2010), 37 pages. https:

//doi.org/0000001.0000001

1 INTRODUCTION
In the context of this work, a pattern is a string that consists of terminal symbols (e. g., a, b, c) and
variables (e. g., x1,x2,x3). The terminal symbols are treated as constants, while the variables are

to be uniformly replaced by strings over the set of terminals (i. e., different occurrences of the

same variable are replaced by the same string); thus, a pattern is mapped to a terminal word. For

example, x1abx1x2cx2x1 can be mapped to acabaccaaccaaac and babbacab by the replacements

(x1 → ac,x2 → caa) and (x1 → b,x2 → a), respectively.

∗
This work represents an extended version of the paper “Pattern Matching with Variables: Fast Algorithms and New

Hardness Results” presented at STACS 2015 and published in LIPICS with http://dx.doi.org/10.4230/LIPIcs.STACS.2015.302

Authors’ addresses: Henning Fernau, Fachbereich IV – Abteilung Informatikwissenschaften, Universität Trier, Trier, Ger-

many, Fernau@uni-trier.de; Florin Manea, Göttingen University, Institute of Computer Science, Göttingen , Germany,

florin.manea@informatik.uni-goettingen.de; Robert Mercaş, Loughborough University, Department of Computer Science,

Loughborough, United Kingdom, R.G.Mercas@lboro.ac.uk; Markus L. Schmid, Fachbereich IV – Abteilung Informatikwis-

senschaften, Universität Trier, Trier, Germany, MSchmid@uni-trier.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1559-1131/2010/3-ART39 $15.00

https://doi.org/0000001.0000001

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.302
https://doi.org/0000001.0000001

39:2 H. Fernau et al.

Due to their simple definition, the concept of patterns (and how they map to words) emerges

in various areas of theoretical computer science, such as language theory (pattern languages [2]),

learning theory (inductive inference [2, 13, 32, 34], PAC-learning [25]), combinatorics on words

(word equations [23, 31], unavoidable patterns [30]), pattern matching (generalised function match-

ing [1, 33]), database theory (extended conjunctive regular path queries [5]), and we can also find

them in practice in the form of extended regular expressions with backreferences [6, 18, 19], used

in programming languages like Perl, Java, Python, etc.

In all these different applications, the main purpose of patterns is to express combinatorial pattern

matching questions. For instance, searching for a word w in a text t can be expressed as testing

whether the pattern xwy can be mapped to t and testing whether a wordw contains a k-repetition
is equivalent to testing whether the pattern xykz can be mapped tow . Not only problems of testing

whether a given word contains a regularity or a motif of a certain form can be expressed by patterns,

but also problems asking whether a word can be factorised in a specifically restricted manner can

be modelled in this way. For instance, asking whether x2y3 can be mapped tow is equivalent to

asking whether the wordw can be factorised in two equal factors followed by three equal factors.

It is also easy to see that such abstract combinatorial questions can have natural applications as

well, e. g., in tasks of information retrieval where recurring factors need to be identified that are

not a priori length-bounded (note that this goes beyond the capability of regular expressions).

Unfortunately, deciding whether a given pattern can be mapped to a given word, the matching

problem, is NP-complete [2], which naturally severely limits the practical application of patterns.

In fact, there are only few applications of patterns for which this problem does not play a central

role and, furthermore, some computational tasks on patterns that have no apparent connection

to the matching problem turn out to implicitly solve it anyway (e. g., this is the case for the task

of computing so-called descriptive patterns for finite sets of words [2, 15]). A comprehensive

multivariate analysis of the complexity of the matching problem [16, 17] demonstrates that the

NP-completeness also holds for strongly restricted variants of the problem. On the other hand,

some subclasses of patterns are known for which the matching problem is in P (this is obviously

the case if the number of different variables in the patterns is bounded by a constant, but there

are also more sophisticated structural parameters of patterns that can be exploited in order to

solve the matching problem efficiently [35–37, 39]). Unfortunately, the existing polynomial time

algorithms for these classes serve the mere purpose of proving containment in P; thus, they cannot

be considered efficient in a practical sense. Therefore, for some of the known restrictions that yield

polynomial-time solvability, we present better algorithms. While we consider our algorithms to

be advanced and non-trivial, their running times have still an exponential dependency on certain

parameters of patterns and, therefore, are acceptable only for strongly restricted classes of patterns.

However, as can be concluded from the parameterised hardness results of [17], these exponential

dependencies seem necessary under common complexity theoretical assumptions.

In some applications of patterns it might be necessary to require the mapping of variables to be

injective (i. e., different variables are substituted by different objects), e. g., this is the case in the

detection of duplications in program code (see [3]). From a more general point of view, this injective

version of the matching problem asks whether a word can be factorised in a certain way, such

that some specific factors are not allowed to coincide. The special version of this problem where

each two factors must be different has been investigated in [9] and is motivated by the problem of

self-assembly of short DNA fragments into larger sequences, which is crucial for gene synthesis

(see references in [9]). We show the NP-completeness of the following natural combinatorial

factorisation problem: given a number k and a wordw , canw be factorised into at least k distinct

factors? Besides the general insight into the hardness of computing a factorisation with distinct

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:3

factors, this result also implies that even for the trivial patterns x1x2 · · · xk the matching problem

becomes NP-complete if we require injectivity. Thus, the injective variant of the matching problem

can be considered much harder; in particular, all the structural restrictions of patterns that are

known to yield polynomial-time solvability of the matching problem fail if injectivity is required.

This paper is the full version of the extended abstract [14] presented at STACS 2015 and it

contains all the omitted proofs and technical details. The organisation is as follow. The next section,

Section 2, contains basic definitions and then, in Section 3, we give an overview of our results. In

Section 4, we develop our algorithms for the matching problem and, in Section 5, we present the

hardness result mentioned above. Finally, we give some conclusions in Section 6.

2 BASIC DEFINITIONS
For detailed definitions regarding combinatorics on words we refer to [29].

We denote our alphabet by Σ, the empty word by ε , the set of all non-empty words over Σ by Σ+,
the set of all words over Σ by Σ∗, and the length of a word w by |w |. (Σ∗, ·, ε) is the free monoid

over Σ with concatenation as its binary operation, written ·. For w ∈ Σ∗ and every integers i, j
with 1 ≤ i ≤ j ≤ |w |, letw[i ..j] = w[i] · · ·w[j], wherew[k] represents the letter on position k and

1 ≤ k ≤ |w |. A period of w is any positive integer p for which w[i] = w[i + p], for all defined
positions. Moreover, in this case,w is said to be p-periodic. Its minimal period is denoted by per (w)
and represents the smallest period ofw . For example,w = abacabacabacabacab has periods 8 and

4; in particular, per (w) = 4. A wordw is called periodic if per (w) ≤ |w |
2
.

The concatenation of k wordsw1,w2, . . . ,wk is written Πi=1,kwi . Ifw = wi for all integers i with
1 ≤ i ≤ k , this represents the kth power ofw , denoted bywk

; here,w is a root ofwk
. We can further

extend the notion of a power of a word by saying that w = w[1..per (w)]
|w |

per (w)
. We say that w is

primitive if it cannot be expressed as a power of exponent ℓ of any root, where ℓ is an integer with

ℓ > 1. Conversely, ifw = vℓ
for some integer ℓ > 1, thenw is also called a repetition. The infinite

repetition vvv · · · of some word v is denoted vω .
For any wordw ∈ Σ+ withw = xyz, we say that y is a factor ofw . If x is empty, then y is also

a prefix of w , while when z is empty, then y is also a suffix. Whenever we have a factor both as

a prefix and as a suffix, the factor is said to be a border of the word. Furthermore, every word

u = yzx ∈ Σ+ is a conjugate ofw . Note that, ifw is primitive, so is every conjugate of it. Ifw has

prefix v , i. e., w = vu, then we also use v−1w in order to denote the suffix u that remains after

removing the prefix v fromw .

For a word w ∈ Σ+, a factorisation of w is a tuple p = (u1,u2, . . . ,uk) ∈ (Σ+)k , for k ≥ 1, with

w = u1u2 · · ·uk . For every i , 1 ≤ i ≤ k , p (i) = ui is called a factor of p, or simply a p-factor. The set
of factors of p is defined as sf (p) = {u1,u2, . . . ,uk } and its size as s(p) = k . The factorisation p is

unique if all its factors are distinct, i. e., s(p) = | sf (p) |. For the sake of readability, we sometimes

represent a factorisation (u1,u2, . . . ,uk) in the form u1 | u2 | . . . | uk .

Example 2.1. Letw = abacbaabaa be a word over Σ = {a, b}. Then p = (a, ba, cba, a, ba, a) is a
factorisation of w with its third factor p (3) = cba. Furthermore, p is not unique, since | sf (p) | =
|{a, ba, cba}| , s(p) = 6, or, in other words, there exists a repeated factor, e. g., p (2) = p (5) = ba.
On the other hand, q = (ab, a, c, ba, abaa) is a unique factorisation forw of size 5.

Let X = {x1,x2,x3, . . .} and call every x ∈ X a variable. For a finite alphabet Σ of terminals with

Σ ∩ X = ∅, we define PatΣ = (X ∪ Σ)+ and Pat =
⋃

Σ PatΣ. Every α ∈ Pat is a pattern and every

w ∈ Σ∗ is a (terminal) word. Given a word or a pattern v , for the smallest sets B ⊆ Σ and Y ⊆ X
with v ∈ (B ∪ Y)∗, we denote alph(v) = B (i. e., the set of terminal symbols) and var(v) = Y (i. e.,

the set of variables). For any x ∈ Σ ∪X and α ∈ PatΣ, |α |x denotes the number of occurrences of x

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:4 H. Fernau et al.

in α ; for the sake of convenience, we set |α |x = 0 for every symbol x not in Σ ∪ X . By rvar(α), we
denote the set of repeated variables, i. e., rvar(α) = {x ∈ var(α) | |α |x ≥ 2}. For a pattern α , we say
thatw = α[i ..i + |w |] is a maximal terminal factor of α if α[i − 1] and α[i + |w | + 1] are either not
defined, or are variables.

A substitution (for α) is a mapping h : var(α) → Σ+. For every x ∈ var(α), we say that x is

substituted by h(x) and h(α) denotes the word obtained by substituting every occurrence of a

variable x in α by h(x) and leaving the terminals unchanged. If, for all x ,y ∈ var(α), x , y implies

h(x) , h(y), then h is injective. We say that the pattern α matches w ∈ Σ+ if h(α) = w for some

substitution h : var(α) → Σ+.
Next, we formally define the problems of matching patterns with variables. To this end, let

P ⊆ Pat be a family of patterns. The matching problem (for P) is defined as follows.

Match for P
Instance: Pattern α ∈ P and wordw .

Question: Is there a substitution h with h(α) = w?

If P = Pat, i. e., the full class of all patterns, we just use the term matching problem (or just

Match, for short).
1

As an example, consider the pattern β = x1ax2bx2x1x2 and the terminal wordsu = bacbabbbbacbb
and v = abaabbababab. Both (β ,u) and (β ,v) are positive instances of Match, as witnessed by

the substitutions h with h(x1) = bacb, h(x2) = b and д with д(x1) = д(x2) = ab, respectively. On
the other hand, it can be easily seen that β does not match the wordw = cbaabbbbab, since any
possible substitution maps x1 to a word starting with c, but there is only one occurrence of c inw .

The injective variant of the matching problem (for P) is defined as follows.

inj-Match for P

Instance: Pattern α ∈ P and wordw .

Question: Is there an injective substitution h with h(α) = w?

Coming back to our example from above, we observe that (β,u) is also a positive instance of

inj-Match, since h is an injective substitution. On the other hand, д is obviously not injective and

it can be easily verified, that (β ,v) is in fact a negative instance of inj-Match, i. e., there is no

injective substitution that maps β to v .
Next, we introduce several interesting families of patterns. A pattern α is regular if, for every

x ∈ var(α), we have |α |x = 1, and the class of regular patterns is denoted by Patreg. For any integer

k ≥ 1, a k-variable pattern is a pattern α that satisfies |var(α) | ≤ k and a k-repeated-variable pattern
is a pattern α that satisfies |rvar(α) | ≤ k (recall that rvar(α) is the set of repeated variables as

defined above). For every integer k ≥ 0, Patvar≤k and Patrvar≤k denote the set of k-variable patterns
and k-repeated-variable patterns, respectively. Obviously, Patreg = Patrvar≤0.

For every y ∈ var(α), the scope of y in α is defined by scα (y) = {i, i + 1, . . . , j}, where i is the
leftmost and j the rightmost occurrence of y in α . The scopes of some variables y1,y2, . . . ,yk ∈
var(α) coincide in α if

⋂
1≤i≤k scα (yi) , ∅. By scd(α), we denote the scope coincidence degree (scd

for short) of α , which is the maximum number of variables in α such that their scopes coincide.

For every k ≥ 1, let Patscd≤k denote the set of patterns α with scd(α) ≤ k . By definition, Patscd≤1

coincides with the class of non-cross patterns (see [39]), which we denote by Patnc.

The one-variable blocks in a pattern are maximal contiguous blocks of occurrences of the same

variable. A pattern α with m one-variable blocks can be written as α = w0Πi=1,m (zkii wi) with

1
There exist variants of the matching problem where substitutions can also erase variables by mapping them to ε . In this

work, we are not concerned with this variant of the problem.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:5

zi ∈ var(α) for i ∈ {1, 2, . . . ,m} and zi , zi+1, whenever wi = ε for i ∈ {1, 2, . . . ,m − 1}. The

number of one-variable blocks is a natural complexity measure that we will consider.

Example 2.2. By definition, ax1bx2cx3bcax4 is regular; ax1bx1x2ax2x3x3bx4 is non-cross, whereas
x1bx1x2bx3x4bx2 is not. For α = x1x2x1x2x3x1x2x3, the scopes are scα (x1) = {1, 2, . . . , 6}, scα (x2) =
{2, 3, . . . , 7} and scα (x3) = {5, 6, . . . , 8}; thus, the scopes of all three variables coincide, which means

scd(α) = 3. On the other hand, for β = x1x2x1x2x3x2x3x3, scα (x1)∩scα (x2) , ∅, scα (x2)∩scα (x3) ,
∅, but scα (x1) ∩ scα (x3) = ∅; thus, scd(β) = 2. The pattern α = x1x2x2ax2x2x2x3ax3x2x2x3x3 has 7
one-variable blocks: x1,x2x2,x2x2x2,x3,x3,x2x2,x3x3.

The computational model we use in this work is the standard unit-cost RAM with logarithmic

word size. Also, all logarithms appearing in our time complexity evaluations are in base 2.

For the sake of generality, we assume that whenever we are given as input a word w ∈ Σ∗ of
length n, the symbols ofw are in fact integers from {1, 2, . . . ,n} (i.e., Σ = alph(w) ⊆ {1, 2, . . . ,n}),
andw is seen as a sequence of integers. This is a common assumption in the area of algorithmics

on words (see, e.g., the discussion in [24]). Clearly, our reasoning holds canonically for constant

alphabets, as well.

For a length n word w we can build in O (n) time the suffix array structure, as well as data

structures allowing us to retrieve in constant time the length of the longest common prefix of any

two suffixes w[i ..n] and w[j ..n] of w , denoted LCPw (i, j) (the subscript w is omitted when there

is no danger of confusion). Such structures are called LCP data structures in the following. For

details, see, e.g., [21, 24], and the references therein. Similarly, we can build structures allowing us

to retrieve in constant time the length of the longest common suffix of any two prefixesw[1..i] and
w[1..j] ofw , denoted LCSw (i, j).

3 SUMMARY OF OUR RESULTS
The classical and parametrised complexity of the matching problem for patterns have been recently

investigated and are well understood (see [7, 16, 17, 33]). The most prominent subclasses of patterns

for which it can be solved in polynomial time are the classes of patterns with a bounded number

of (repeated) variables (in this regard, note that the database example in Section 1 had only one

repeated variable), of regular patterns, of non-cross patterns, and of patterns with a bounded scope

coincidence degree (see [2, 36, 39]). However, as mentioned in the introduction, the respective

algorithms are rather poor considering their running times. For example, for patterns with a

bounded number k of variables, the matching problem can be solved in O (mnk−1
(k−1)!), wherem and

n are the lengths of the pattern and the word (see [22]). For patterns with a scope coincidence

degree of at most k , an O (mn2(k+3) (k + 2)2) time algorithm is given in [36], wherem and n are

the lengths of the pattern and the word, respectively, and the proof that the matching problem

for non-cross patterns is in P (see [39]) leads to an O (n4)-time algorithm. Hence, we consider the

following problem worth investigating.

Problem 1. LetK be a class of patterns for which the matching problem can be solved in polynomial

time. Find an efficient algorithm that solves the matching problem for K .

The main class of patters we consider is that of patterns with bounded scope coincidence degree.

Our first result in this setting concerns patterns where the scope coincidence degree is bounded

by 1, or, in other words, non-cross patterns. In that case we show that we can decide whether a

pattern α havingm one-variable blocks matches a wordw of length n in O (mn logn) time; this is an

important improvement over the previously available O (n4) algorithm. Our algorithm is based on a

general dynamic programming approach, and it tries to find, for certain prefixes of the pattern, the

prefixes of the word that match them. While the general approach is rather simple, the details of the

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:6 H. Fernau et al.

efficient implementation of this approach require a detailed combinatorial analysis of the possible

matches. For instance, as a byproduct of our approach to the matching problem for Patnc, we obtain

a stringology result that extends in a non-trivial manner a major result from [10], showing how

the primitively rooted squares contained in a word of length n can be listed optimally in O (n logn).
Our result shows that, given a word w of length n and a word v with length shorter than n, the
word w contains O (n logn) factors of the form uvu with uv primitive, and all these factors can

be found in O (n logn) time. Again, this result is optimal, as it can be seen just by looking at the

original case of primitively rooted squares, or factors of the form uvu with uv primitive and v = ε .
When considering general patterns with bounded scope coincidence degree, we show, using

a similar dynamic programming approach, that the matching problem for Patscd≤k is solvable in

O (m2n2k

k !(k−1)!) time, where n is the length of the input word andm is, again, the number of one-variable

blocks occurring in the pattern. One should note that in this case we were not able to use all the

combinatorial insights shown for non-cross patterns (thus, the logn factor is replaced by an n factor

in the evaluation of the time complexity), but, still, our algorithm is significantly faster than the

previously known solution.

Another class of patterns we consider is Patrvar≤k of patterns with at most k repeated variables.

For the basic case of k = 1 we obtain that the matching problem can be solved in O (n2) time, where

n is the length of the input word. Our algorithm is based on a non-trivial processing of the suffix

array of the input word. Further, we use this result to show that the matching problem for the

general class of patterns Patrvar≤k is solvable in O (n2k

((k−1)!)2) time. Note that our algorithm is better

than the one that could have been obtained by using the fact that patterns with at most k repeated

variables have the scope coincidence degree bounded by k + 1, and then directly applying our

previous algorithm solving the matching problem for Patscd≤k+1.

The classes of non-cross patterns and of patterns with a bounded scope coincidence degree or

with a bounded number of repeated variables are of special interest, since for them we can compute

so-called descriptive patterns (see [2, 39]) in polynomial time. A pattern α is descriptive (with

respect to, say, non-cross patterns) for a finite set S of words if it can generate all words in S and

there exists no other non-cross pattern that describes the elements of S in a better way. Computing

a descriptive pattern, which is NP-complete in general, means to infer a pattern common to a finite

set of words, with applications for inductive inference of pattern languages (see [32]). For example,

our algorithm for computing non-cross patterns can be used in order to obtain an algorithm that

computes a descriptive non-cross pattern in time O (
∑
w ∈S (m

2 |w | log |w |)), wherem is the length

of a shortest word of S (see [15] for details).

Our algorithms, except the ones for the basic cases of non-cross patterns and patterns with only

one repeated variable, still have an exponential dependency on the number of repeated variables or

the scope coincidence degree. Therefore, only for very low constant bounds on these parameters

can these algorithms be considered efficient. Naturally, finding a polynomial time algorithm for

which the degree of the polynomial does not depend on the number of repeated variables would be

desirable. However, such an algorithm would also be a fixed parameter algorithm for the matching

problem parameterised by the number of repeated variables and in [17] it has been shown that this

parameterised problem isW [1]-hard. This means that the existence of such an algorithm is very

unlikely. Furthermore, since the number of repeated variables gives also an upper bound for the

scope coincidence degree, the mentionedW [1]-hardness result carries over to the case where the

scope coincidence degree is a parameter and therefore it is just as unlikely to find an algorithm

that is not exponential in the scope coincidence degree. This observation justifies the exponential

dependency of our algorithms on the number of repeated variables and the scope coincidence

degree.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:7

As mentioned in the introduction, in certain settings it makes sense to require the mapping of

variables to words to be injective. The current state of knowledge regarding the complexity of the

matching problem suggests that this difference has no substantial impact; although, in [16] it is

shown thatMatch is stillNP-complete if the alphabet size and the length of the words the variables

are mapped to are bounded, whereas it is in P if we additionally require injectivity. In contrast to

this, we prove the following result, which gives strong evidence that inj-Match is generally much

harder than the non-injective version.

Theorem 3.1. The following problem is NP-complete: given a wordw and a number k , is it possible
to factorisew into at least k distinct factors?

Consequently, the injective matching problem is NP-complete even for the trivial patterns

x1x2 · · · xk , which means that, under the assumption P , NP, for all the above mentioned classes

of patterns no polynomial time algorithms for the injective matching problem exist. In addition

to this negative result for the matching problem, we also gain an important insight regarding

the more general problem of factorising a string into distinct factors, which, as mentioned in the

introduction, is motivated by computational biology. In [9], it is shown that it is NP-complete to

factorise a string into distinct factors with a bound on the length of the factors and, in this regard,

our result shows that the NP-completeness is preserved if the length bound is dropped and instead

we have a lower bound on the number of factors.

In the following two main sections of this paper, we first present algorithmic results for the

matching problem, while turning to mostly complexity-theoretic results on the injective variant in

the section following thereafter.

4 EFFICIENT ALGORITHMS FOR THE MATCHING PROBLEM
In this section we propose efficient algorithms for the matching problem for several classes of

patterns. On the one hand, we look in Subsection 4.1 at classes where the number of repeated

variables is bounded: first we consider the basic class of regular patterns, where no variable is

repeated, and then investigate the class of patterns in which exactly k variables are repeated. On

the other hand, we look at classes with bounded scope coincidence degree. A basic class in this

case is the one of non-cross patterns, where the upper bound of the scope coincidence degree is 1

(Subsection 4.2); we then move on and analyse the general case of patterns having the upper bound

of the scope coincidence degree equal to k (Subsection 4.3).

As a general aspect, note that whenever we deal with a matching problem, if the size of the

pattern α is greater than the length of the wordw , then the problem is solvable in O (|w |) in the

negative (we can at the beginning verify the lengths of each sequence and stop after O (|w |) steps).
Therefore, for the remainder of the paper we will always assume that |α | < |w |. Also, when talking

about the running times of algorithms, we can hence measure the input length by |w |. Moreover,

since for every instance of the matching problem we are presented with a word and a pattern

as input, one can in a preprocessing step construct in linear time (relative to the length of the

word) the suffix array, LCP , and LCS data structures associated to the word, the pattern, or the

concatenation of these two. This will ensure, e.g., the fact that testing the equality of factors of the

pattern and the word can be done in constant time, testing whether a factor has a certain period,

etc., within our main algorithms.

4.1 Patterns with a bounded number of repeated variables
For the class Patreg of regular patterns (note that this class coincides with the class of patterns with

no repeated variable) we can show the following result.

Theorem 4.1. The matching problem for Patreg is solvable in linear time.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:8 H. Fernau et al.

Algorithm 1 Solving the matching problem for Patreg in linear time

Input: regular pattern α = w0Πi=1,m (xiwi) with m ≥ 1, xi ∈ var(α) and wi ∈ Σ∗, and a word

w ∈ Σ∗ with n = |w |
Output: yes or no according to whether α matchesw
1: if w0 is not a prefix ofw then return no
2: s := 1, j := |w0 |

3: while s < m do
4: if ws does not occur inw[j + 2..n] then return no
5: let j ′ be the start position of the leftmost occurrence ofws inw[j + 2..n]
6: j := j ′ + |ws | − 1, s := s + 1
7: end while
8: if wm is a suffix ofw[j + 2..n] then return yes else return no

Proof. We claim that Algorithm 1 solves the matching problem for Patreg in linear time. The

correctness of this algorithm follows from the observation that there is a substitution h with h(α) =
w if and only if there is a substitution д, such that, for every s with 1 ≤ s ≤ m, д(w0Πi=1,sxiwi) is
the shortest prefix ofw that matches the patternw0Πi=1,sxiwi (the if direction of this statement is

trivial, while the only if direction follows by induction). Next, we show that Algorithm 1 can be

implemented such that it has a linear running-time. To this end, we observe that if we perform the

search forws inw[j + 2..n] with the Knuth-Morris-Pratt (KMP) algorithm, then every iteration of

the while-loop requires time O (|ws |+ |w[j + 2..j ′+ |ws | − 1]|), which, over all iterations, sums up to

O (|w |). Since all other tasks can obviously be carried out in time O (|w |), the overall running-time

is O (|w |). □

We stress that for constant alphabets our result is similar to that in [39]. However, that result

uses string matching strategies based on finite automata, thus the O-denotation used to express its

complexity hides a factor depending on |Σ|. For our algorithm, this is not the case: the complexity

we get for solving the matching problem does not depend at all on the size of the terminal alphabet.

Moreover, our algorithm can be easily adapted to the case when allowing variables to map to the

empty word, a scenario neglected otherwise in this paper.

This would be also true for the following algorithm that solves the matching problem for Patrvar≤1

in cubic time: For all assignments of factors wi of w to the repeated variable x , run the previously

obtained linear-time algorithm for the matching problem for the regular pattern obtained from the

pattern α by substituting x by wi . In the following, we show how to further improve this simple

algorithm towards quadratic time complexity.

Theorem 4.2. The matching problem for Patrvar≤1 is solvable in quadratic time.

Proof. Let us consider a pattern α in which exactly one variable, denoted by x , occurs more

than once (if no such variable exists, then the statement follows as in the algorithm solving the

matching problem for regular patterns, see Theorem 4.1).

The main idea behind the algorithm used to obtain this result is to find an assignment for the

repeating variable x from the input pattern α , such that all terminal factors are well placed within

the word, and then fill up (using a linear pattern matching algorithm to correctly align the maximal

terminal factors of the pattern inside the word) the remaining spaces with the help of the rest of

the variables from the pattern, since they occur only once.

Let again n = |w |. We split the discussion in cases: the simple cases and the involved case.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:9

Simple cases. If α = w ′xβ with w ′ ∈ Σ∗, then α matches w if and only if α ′ matches w , where

α ′ ∈ Patreg is obtained from α by substituting x with some factor w[|w ′ | + 1..|w ′ | + i], for some

i with 1 ≤ i ≤ |w | − |w ′ |. Hence, according to our solution for the matching problem for regular

patterns, it is decidable whether α matches w in time O (n2). Obviously, the same holds when

α = βxw ′ withw ′ ∈ Σ∗.
Involved Case. Assume that we are no longer in any of the simple cases discussed above. The rest

of the proof deals with the more involved case, namely when α = βxγxδ , where β and δ contain at

least one variable each and |β |x + |δ |x = 0 (in the following, we denote this property by †). Let us

denote the number of occurrences of x in α by N = |α |x . We factorise α as

α = w0Πi=1,m (βiwiγiw
′
i)βm+1wm+1,

such thatm ≤ N and

• w0,wm+1,w j ,w
′
j ∈ Σ

∗
, where 1 ≤ j ≤ m,

• βj starts and ends with a variable and |βj |x = 0, where 1 ≤ j ≤ m + 1, and
• γj starts and ends with variable x and γj ∈ (Σ ∪ {x })+, where 1 ≤ j ≤ m.

For legibility, we write α j = w0Πi=1, j (βiwiγiw
′
i), where 1 ≤ j ≤ m.

It is easy to see that each pattern α with property † has a unique factorisation of this form,

which can be computed in O (|α |) time. Intuitively, by defining the patterns γi , we identified the

length-maximal factors of α that contain only the variable x and terminals, and start and end with x .
Now, while trying to find an assignment of the variables of α so that this pattern matchesw , we can

assign values to the variables occurring in the factors βi independently, but we need to check that

the factors ofw corresponding to the patterns γi induce the same assignment of each occurrence of

the variable x .
We first run a series of preprocessing steps, denoted with § Preprocessing in the following.

§ Preprocessing 1.We construct for the wordsw andwα the suffix arrays, the LCP and the LCS

data structures. It is clear that for any terminal factor u of α and position i ofw we can now test in

constant time whether u starts or ends at position i inw .

§ Preprocessing 2. Further, we try to find the possible matches for the factors βj of α that do not

contain the variable x . To this end, we define the n × (m + 1) matrix M[·][·] with M[i][j] = ℓ if
and only if w[i ..ℓ] is the shortest factor starting on position i of w that is matched by βj . As βj
starts and ends with variables that occur only once in α , thenw[i ′..ℓ′] matches βj for all i

′ ≤ i and
ℓ′ ≥ M[i][j].

The matrixM can be computed by Algorithm 2, which we explain next. For a maximal terminal

factor u of α , Line 2 identifies all its occurrences and requires time O (|w |) (by using the KMP

algorithm) and, by using the starting positions of the occurrences computed in Line 2, the for-loop

in Lines 3 to 5 requires time O (|w |), as well, to compute, for each i ≤ n, the starting position of the

first occurrence of u inw[i ..n]. Consequently, the whole preprocessing of Lines 1 to 6 requires time

O (|α |n). It can be easily verified that Lines 9 to 14 (i. e., computing a single entryM[i][j]) require
time O (|βj |). Essentially, the algorithm follows the same greedy approach as in the algorithm

matching regular patterns. Consequently, computing all entriesM[i][·] is done in time O (|α |) and
therefore the overall time spent for computingM is O (n |α |).
We can now move on to discuss the main algorithm.

§ Main Algorithm. Analogous to Algorithm 1, the algorithm for the matching problem for

Patrvar≤1 is based on the following observation: for every j with 1 ≤ j ≤ m, there exists a

substitution h with h(α j) = w[1..p] and h(x) = v if and only if there exists a substitution д with
д(x) = v , д(α j) = w[1..p], and д(α j−1) is the shortest prefix ofw that matches α j−1 with respect to a

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:10 H. Fernau et al.

Algorithm 2 Compute matrixM – § Preprocessing 2

Input: pattern α , and a wordw ∈ Σ∗ with n = |w |
Output: matrixM
1: for every maximal terminal factor u of α do
2: compute all starting positions of occurrences of u inw
3: for i = 1, 2, . . . ,n do
4: compute du,i = min{j | i ≤ j ≤ n,u = w[j ..j + |u | − 1]}
5: end for
6: end for
7: for i = 1, 2, . . . ,n do
8: for j = 1, 2, . . . ,m + 1 do
9: let u1,u2, . . . ,us be the maximal terminal factors occurring in βj
10: д1 := du1,i+1
11: for h = 2, . . . , s do
12: дh := duh,дh−1+ |uh−1 |+1
13: end for
14: M[i][j] := дs + |us | + 1
15: end for
16: end for

substitution that maps x to v . Therefore, for a fixed v , checking whether there exists a substitution

h with h(α) = w and h(x) = v can be done by Algorithm 3.

Algorithm 3 Check whether there exists h with h(α) = w and h(x) = v

Input: pattern α , wordw ∈ Σ∗ with n = |w |, factor v ofw
Output: yes or no according to whether α matchesw
1: if w starts withw0 then set p0 := |w0 |; else return no
2: for i = 1, 2, . . . ,m − 1 do
3: pi := pi−1 +M[pi−1 + 1][i]
4: find the starting position p ′i of the leftmost occurrence ofwih(γi)w

′
i inw[pi + 1..n]

5: if wih(γi)w
′
i does not occur inw[pi + 1..n] then set p ′i = n + 1

6: if p ′i ≤ n then pi := p
′
i + |wih(γi)w

′
i | − 1; else return no.

7: end for
8: pm := pm−1 +M[pm−1 + 1][m]

9: if wm+1 is a suffix ofw[pm + 1..n] then return yes; else return no.

In order to solve the matching problem for Patrvar≤1 as sketched above, we would have to try

all factors of w as possible images for x , which leads to a cubic running-time. Indeed, for each

such factor, and for all i ≤ m − 1 we do the following. In Line 3 we check if βi occurs at position
pi−1 + 1 in constant time. Then we need to run a linear-time pattern matching algorithm to see

wherewih(γi)w
′
i occurs first, to the left of the shortest factor starting after pi−1 and matching βi .

To show our claim, it remains to explain how this general strategy can be implemented in

quadratic time.More precisely, we are looking for an efficient exploration of the possible assignments

of the values v to x , so that Line 4 of Algorithm 3 can also be executed more efficiently. This is

described in the pseudocode of Algorithms 4 and 5, while the details are explained in the rest of

this proof.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:11

Algorithm 4 Check whether there exists h with h(α) = w

Input: pattern α with N = |α |x , wordw ∈ Σ
∗
with n = |w |

Output: yes or no according to whether α matchesw
1: for ℓ = 1, 2, . . . ,n do
2: partition the suffix array ofw into clusters, by grouping together suffixes whose LCP ≥ ℓ
3: let C1, . . . ,Cp be the clusters with at least N elements

4: for i = 1, 2, . . . ,p do
5: Let v be the common prefix of length ℓ of the suffixes of Ci
6: Check if there exists h with h(α) = w and h(x) = v using Algorithm 5 for Ci and v .
7: if yes then return yes
8: end for
9: end for
10: return no

§ An Efficient Implementation of the Main Algorithm. The idea is that, for every integer ℓ from
1 to n, we check if there exists a substitution mapping α to w , where x is mapped to a factor of

length ℓ. Let us fix such an ℓ. In linear time, we can partition the suffix array ofw in several clusters

(i.e., blocks of consecutive positions in the suffix array that are not extendable to the left or right)

such that the suffixes contained in one cluster are sharing a common prefix of length at least ℓ
(note that this can be done by moving through the suffix array and performing LCP queries with

respect to each two consecutive suffixes). It is important to note that no matter to what factor v of

length ℓ the variable x is mapped, if the image of each γi under this mapping is indeed a factor

ofw , then they all occur as prefixes of some suffixes contained in the same cluster from the ones

defined above, with at least N (the number of occurrences of x in α) elements, i. e., exactly the

cluster where the suffixes share a common prefix starting with v , and there is a sufficient number

of them to cover all occurrences of x . Moreover, in linear time, by traversing once the suffix array,

we order (with radix sort) the suffixes in all clusters increasingly w.r.t. their starting position. Now,

not only that all the images of the patterns γi under the aforementioned mapping occur as prefixes

of suffixes from the same cluster, but the images of the γi occur in order of their appearance in α
within the cluster.

So, once ℓ is fixed, we also fix a cluster of at least N suffixes sharing a prefix of length at least ℓ.
Now, we try to find a substitution that maps α tow such that x is mapped to v , the common prefix

for the cluster. This process is described in pseudo-code in Algorithm 5.

We start with j = 1, p = |w0 | + 1 and a token placed on the first element of the cluster.

Let s = M[p][j] (i.e., w[p..s] is the shortest prefix of w[p..n] that is an image of βj); initially,
s = M[|w0 | + 1][1] (i.e., w[1..s] is the shortest prefix of w that is the image of w0β1). We now

traverse the cluster, left to right, from the position pointed by the token and moving the token

accordingly, until we find the first suffix starting after position s + |w j | and preceded byw j (checked

in O (1) time by an LCS query). Assume we found such a suffixw[r ..n]. We want to check whether

it starts with the image of γjw
′
j , where γj = (Πi=1,qj (xui, j))x for some qj and maximal terminal

factors ui, j . The maximum integer h with (Πi=1,h (vui, j))v a prefix ofw[r ..n] is found in time O (h)
by 2h + 1 LCP queries, and we store pos = r .
If h = qj and (Πi=1,qj (vui, j))v is followed byw ′j , then we found the leftmost occurrence corre-

sponding tow jγjw
′
j inw to the right of s , where x is mapped to v; if p ′ is the last position of this

occurrence, then we identified the shortest prefix w[1..p ′] of w that can be the image of α j in a

substitution that maps x to v . We take now p = p ′ + 1, increase j by one and restart the procedure

if j ≤ m still holds.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:12 H. Fernau et al.

Algorithm 5 Check whether there exists h with h(α) = w and h(x) = v , with v a common prefix

of all suffixes in a cluster C

Input: pattern α , word w ∈ Σ∗ with n = |w |, cluster C , word v ∈ Σ∗ a common prefix of the

suffixes of C
Output: yes or no according to whether h(α) = w for a substitution with h(x) = v
1: assume C contains the positions r1 < . . . < ru ofw (corresponding to the suffixesw[ri ..n] of

w , with 1 ≤ i ≤ u
2: Set t = 1 (position of the token), p = |w0 | + 1, j = 1 (we search for matches for γj)
3: while j ≤ m do
4: assume γj = (Πi=1,qj (xui, j))x
5: set h = 0, pos = 1 (h tracks the longest prefix of γj matched so far, and pos the position where

this prefix occurs), s = M[p][j], d = 0 (tracks whether γj was completely matched)

6: while d = 0 do
7: set f = 0 (used to search the firstw[rt ..n] is preceded byw j)

8: while f = 0 do
9: if rt − |w j | > s andw[rt − |w j |..rt − 1] = w j then set f = 1

10: set t = t + 1
11: if t > u then set f = 2

12: end while
13: if f = 2 then return no
14: find the maximum h′ > h such that (Πi=1,h′ (vui, j))v is a prefix of w[rt ..n]; this is

done by 2(h′ − h) + 1 LCP-queries: check that LCP of w[pos ..n] and w[rt ..n] is at least
|(Πi=1,h (vui, j))v |, then that the prefix (Πi=1,h+д (vui, j))v ofw[rt ..n] is followed by uh+д+1
and then by v for д from 0 to h′ − h − 1

15: if we found h′ > h in the previous step then update h = h′ and pos = rt
16: let ℓ = |(Πi=1,h (vui, j))v |, p

′ = rt + ℓ + |w
′
j | − 1

17: if h = qj andw[rt + ℓ..p
′
] = w ′j then set p = p ′ + 1, j = j + 1,d = 1 (w[rt ..p

′
] matches γj)

18: end while
19: end while
20: return yes.

If h < qj , or h = qj andw
′
j does not follow (Πi=1,h (vui, j))v , then we keep traversing the cluster,

and, moving the token, we look for a suffix that is preceded bywi and shares a prefix withw[r ..n]
at least as long as (Πi=1,h (vui, j))v . As soon as we found one, sayw[r ′..n], we find the maximum

integer h′ > h such that (Πi=1,h′ (vui, j))v is its prefix. Finding h′ takes at most 2(h′ − h) + 1 LCP-
queries, as we only need to first check if (Πi=1,h (vui, j))v occurs as a prefix ofw[r ′..n] (and for this

we do an LCP-comparison betweenw[r ′..n] and the suffixw[pos ..n] of the cluster where we already
found (Πi=1,h (vui, j))v), and then check if all factors of the concatenation (Πi=h+1,h′ (vui, j))v occur

consecutively after the prefix (Πi=1,h (vui, j))v ofw[r ′..n]. Ifh′ = qj and (Πi=1,h′ (vui, j))v is followed

byw ′j , then we proceed as above; otherwise, we continue the traversal of the cluster withw[r ′..n]

in the role of w[r ..n] and h′ in the role of h. Thus, finding the right h within a cluster of size k ,
when it exists, will not require more than

∑k−1
i=1 2(hi+1 − hi) = 2hk − 2h1 ≤ 2k LCP-queries.

If finally we have j =m + 1, then we found the shortest prefix w[1..pm] of w that is an image

of αm while mapping x to v , and we can proceed as previously described to decide whether there

exists a substitution that maps α tow . The processing of a cluster clearly takes O (k + N) = O (k),
where k ≥ N is its size.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:13

If we cannot find the prefixw[1..p ′] ofw that is the image of α j in a substitution that maps x to

v within the current cluster, then the image of x was chosen wrongly, and we should try another

cluster (thus choose another value v for x) defined for the same length, or even another length. As

such, we might repeat the above procedure for all clusters of size at least N . As the total number

of elements in these clusters is upper bounded by n − ℓ for the fixed ℓ, it is clear that their total
processing takes O (n) time.

We have to consider all possible values for ℓ. The time spent for each one is O (n), so, in total our

algorithm needs O (n2) time to decide whether there exists a substitution that maps α tow . The

correctness follows from the explanations above. □

To solve the matching problem for patterns with at most k repeated variables, we choose the

images (starting and ending positions in w) of k − 1 of the k repeated variables, and then get a

pattern with only one repeated variable. Further, we apply Theorem 4.2 on this pattern. As a general

result, we will use that

(
n
k

)
∈ O (n

k

k !).

Theorem 4.3. The matching problem for Patrvar≤k is solvable in O
(

n2k

((k−1)!)2
)
time, where n is the

length of the input word.

Proof. Letw ∈ Σ+ with |w | = n and let α ∈ Patrvar≤k . Let x be the leftmost repeating variable

and let x1,x2, . . . ,xk−1 be the other repeating variables of α , indexed in the order they occur. Our

idea is to first generate all possible images for the variables xi , where 1 ≤ i ≤ k − 1, and, secondly,
for each such assignment, to try to find a suitable image for x such that the substitution maps α to

w .

Let us first look at the part where we generate the images of the variables x1,x2, . . . ,xk−1. We

first choose k − 1 numbers j1, j3, . . . , j2k−3 from {1, . . . ,n} and then k − 1 numbers j2, j4, . . . , j2k−2
from {1, . . . ,n} \ {j1, j3, . . . , j2k−3}. With i2ℓ−1 = min{j2ℓ−1, j2ℓ } and i2ℓ = max{j2ℓ−1, j2ℓ } for ℓ =
1, . . . ,k − 1, we obtain k − 1 many non-empty factorswℓ = w[i2ℓ−1..i2ℓ]. Consequently, there are

less than
n2k−2

((k−1)!)2 ways of choosing these factors.

Now, for each possible substitution for the variables {x1,x2 . . . ,xk−1}, we produce a pattern α
′

where just x is repeated. Further, we can use the algorithm in the proof of Theorem 4.2 to check

in O (n2) time whether the substitution can be extended (i. e., by an image for x), such that α ′ is
mapped tow .

Clearly, this decides the existence of a substitution mapping α tow . The running time is bounded

by O
(
n2 n2k−2

((k−1)!)2
)
= O
(

n2k

((k−1)!)2
)
. □

4.2 Non-cross patterns
Next, we present an algorithm for matching non-cross patterns, which, in a similar way as the

algorithm for patterns with only one repeated variables was extended to patterns with a bounded

number of variables, shall then be extended to patterns with a bounded scope coincidence degree.

The following combinatorial results are well known (see, e. g., [12]).

Lemma 4.4 ([10]). Let u1, u2, and u3 be primitive words, with |u1 | < |u2 | < |u3 | and u
2

i prefixes

(suffixes) of a wordw , for every i with 1 ≤ i ≤ 3. Then 2|u1 | < |u3 |. As a consequence, we have |{u |u
primitive, u2 prefix (respectively, suffix) ofw }| ≤ 2 log |w |.

Assume thatw ∈ Σ∗ is of length n. For each i with 1 ≤ i ≤ n we define the set

Pi = {u | u is a primitive word such that u2 is a suffix ofw[1..i]}.

Lemma 4.4 shows that |Pi | ≤ 2 logn for every i with 1 ≤ i ≤ n. Generally, we can represent the

elements of Pi in various efficient manners (e. g., for each u ∈ Pi it is enough to store its length).

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:14 H. Fernau et al.

Lemma 4.5 ([10]). Letw ∈ Σ∗ be a word of length n. We can compute in O (n logn) time all the sets

Pi associated tow , where i ∈ {1, 2, . . . ,n}.

Note that in [10] there are examples of words of length n for which

∑
i≤n |Pi | ∈ Θ(n logn).

We recall the theorem of Fine and Wilf (also called periodicity lemma).

Theorem 4.6 (Fine and Wilf [29]). If α ∈ u{u,v}∗ and β ∈ v{u,v}∗ have a common prefix of

length at least |u | + |v | − дcd (|u |, |v |), then u,v ∈ {t }+ for a word t .

A rather direct corollary of Theorem 4.6 is the following:

Theorem 4.7 ([29]). Let α ∈ Σ∗ be a word having two periods p and q. If |α | ≥ p + q − gcd(p,q),
then α has also the period gcd(p,q).

A standard application of Theorem 4.7 is the following. If we have the equality uγu ′ = vδv ′ for
some words u,v , with u ′ a prefix of u and v ′ a prefix of v , and γ ,δ ≥ 2, then we can conclude that

there exists a word t such that u,v ∈ {t }∗. Indeed, the word α = uγu ′ = vδv ′ has as periods both
p = |u | and q = |v |, and length |α | ≥ max{2p, 2q} ≥ p + q − gcd(p,q). Then, α has also the period

gcd(p,q). This divides both p and q, so there exists a word t (prefix of α) such that u,v ∈ {t }∗ and
|t | = gcd(p,q).
By similar reasons, we get also that if u ′uγ = v ′vδ holds for some words u,v , with u ′ a suffix

of u and v ′ a suffix of v , and γ ,δ ≥ 2, then we can conclude that there exists a word t such that

u,v ∈ {t }∗. Like before, α = u ′uγ = v ′vδ has as periods both p = |u | and q = |v |. So, α has also the

period gcd(p,q). Reading the period from the end of α towards its beginning, we get that there

exists a word t (suffix of α) such that u,v ∈ {t }∗ and |t | = gcd(p,q).
The next result states a necessary condition for the primitivity of a word.

Theorem 4.8. [29] If u is a primitive word, then the only occurrences of u as a factor of uu are as

prefix or suffix.

Next, we extend the results of Lemmas 4.4 and 4.5. Instead of primitively rooted squares, we

consider words of the form uvu for some fixed word v , with uv primitive (or, equivalently, with vu
primitive).

Proposition 4.9. For a fixed word v , let u1vu1,u2vu2,u3vu3 be prefixes (suffixes) of a wordw with

|u1 | < |u2 | < |u3 | and uiv primitive, for every i with 1 ≤ i ≤ 3. Then 3|u1 |/2 < |u3 |. As a consequence,
we have |{uvu |uv primitive, uvu prefix (respectively, suffix) ofw }| ∈ O (log |w |).

Proof. Let us assume that |u3 | ≤ 3|u1 |/2. Clearly, we get that |u2 | ≤ 3|u1 |/2 and |u3 | ≤ 3|u2 |/2,
as well. In the following, we will show that this assumption leads to a contradiction (note that our

line of reasoning is completely illustrated in Fig. 1).

As u1 is a prefix of u2, looking at the alignment between the second u1 from u1vu1 with the

prefix u1 of the second u2 from u2vu2, since |u2 | ≤
3 |u1 |
2

we get that the period of u1 is less than
|u1 |
2

and, therefore, u1 is periodic. Indeed, the second u2, which starts with u1, occurs in u2vu2 on
position |u2 | + |v | + 1, while the factor of u2vu2 aligned to the second u1 of u1vu1 occurs in u2vu2
on position |u1 | + |v | + 1. The difference between these positions, which gives the period of u1, is
|u2 | − |u1 | ≤ |u1 |/2. Thus, we have that u1 = tα t ′, for an integer α with α ≥ 2 and t ′ a prefix of t ,
for some primitive word t (with |t | = per (u1)).

Let us also note that, by the same reasoning as above, the prefix u1 of the second u2 from u2vu2
starts at least |t | symbols to the right of the starting position of the factor of u2vu2 aligned to the

second u1 of u1vu1. This means |u2v | + 1 − (|u1v | + 1) = |u2 | − |u1 | ≥ |t |. In a similar way we get

|u3 | − |u2 | ≥ |t |.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:15

Since t is primitive, as to not get a contradiction with Theorem 4.8, there exists an integer δ
with δ > 0 such that u1vt

δ = u2v . Indeed, u2 starts with u1, so it starts with a factor t . Also, the
overlap between the factor of u2vu2 aligned to the second u1 of u1vu1 and the second u2 of u2vu2
has length at least 2|u1 | + |v | − |u2 | − |v | = 2|u1 | − |u2 | ≥ |u1 |/2 ≥ |t |. So, if u2v would not have the

form u1vt
δ
then the prefix t of the second u2 would occur inside a factor t2 of the factor of u2vu2

aligned to the second u1 of u1vu1, yielding a contradiction to the primitivity of t .
Moreover, the same holds with respect to u3v , i. e., there exists an integerψ withψ > 0 such that

u1vt
ψ = u3v . Hence, v is a suffix of vtψ , which implies that v = t ′′t β where t ′′ is a suffix of t and β

is an integer with β ≥ 0.

←−−−−−−−−−−−− u1 −−−−−−−−−−−−→ ←−−−−−−− v −−−−−−−→ ←−−−−−−−−−−−− u1 −−−−−−−−−−−−→
←−−−−−−−−−−− tα t ′ −−−−−−−−−−−−→ ←t ′′t β = t βc t ′′c → ←− tδ −→ ←−−−− tα−δ t ′ −−−−→

←−−−−−−−−−−−− u1 −−−−−−−−−−−−→ ←−−−−−−−−−−−− u1 −−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−− u2 −−−−−−−−−−−−−−−−−→ ←−−−−−−− v −−−−−−−→ ←−−−−−−−−−−−−−−−−− u2 −−−−−−−−−−−−−−−−−→

← t ′tc →

← t t ′ →

t ′

←−−−−−−−−−−−− u1 −−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−− u3 −−−−−−−−−−−−−−−−−−−−→ ←−−−−−−− v −−−−−−−→ ←−−−−−−−−−−−−−−−− u3 −−−−−−−−−−−−−−−−−−−−−−−→

Fig. 1. Left alignment of three factors u1vu1, u2vu2, and u3vu3 with u1v , u2v , and u3v primitive, such that
|u1 | < |u2 | < |u3 | and |u3 | ≤

3 |u1 |
2

.

We can assume that |u1v | is not divisible by |t | since otherwise t
′t ′′ = t , so u1v , is a repetition,

which contradicts the primitivity of u1v . This means that v = t
β
c t
′′
where tc is a conjugate of t ,

obtained by rotating t by |t ′′ | positions.
We now check what factor occurs in u2vu2 and u3vu3 at position |u2 | + |v | + |u1 | − |t

′ | + 1. In

u2vu2 we have t
′tc (look after the first occurrence of u1 in u2.) Indeed, |u2 | − |u1 | ≥ |t |, so at least

one full factor of length |t | occurs in u2 after its prefix u1.
In u3vu3, at position |u2 |+ |v |+ |u1 | − |t

′ |+ 1, starts a factor tt ′. Indeed, |u2 |+ |v |+ |u1 | − |t
′ |+ 1 ≥

|u3 | + |v | + 1, because |u3 | ≤ 3|u1 |/2 and |t
′ | < |t | ≤ |u1 |/2. Also, we know that u1vt

ψ = u3v , so
|u2 | + |v | + |u1 | − |t

′ | − |u3v | = |u2 | + |u1 | − |u3 | − |t
′ | is both upper bounded by |u1 | − |t | − |t

′ |

and divisible by t . It follows that, at position |u2 | + |v | + |u1 | − |t
′ | + 1 we have a factor of u1,

occurring with an offset which is both upper bounded by |u1 | − |tt
′ | and also a multiple of |t | from

the beginning of u1. Each such factor starts with tt ′ so our claim follows. Hence, t ′tc = tt ′ holds.

Since vu1[1..|u2 | − |u1 |] = u2[|u1 | + 1..|u2 |]v and v = t ′′t β = t
β
c t
′′
with t and tc primitive, we can

conclude thatvtγ = t
γ
c v , whereγ =

|u2 |− |u1 |
|t | (note thatγ must be an integer). In particular, it follows

that (t ′v)tγ = t ′t
γ
c v and, since t ′tc = tt ′, we can conclude that (t ′v)tγ = tγ (t ′v). Consequently,

the words t ′v and t satisfy the conditions of the periodicity lemma (Theorem 4.7); thus, we can

conclude that t ′v and t are powers of the same word. This leads to a contradiction, as u1v = tα t ′v ,
and if t and t ′v are powers of the same word we would obtain that u1v is a repetition. □

Consider two wordsw,v ∈ Σ∗ with |w | = n. Following the case of the primitively rooted squares,

for every i with i ≤ n we define the set

Rvi = {u | uvu is a suffix ofw[1..i] with uv primitive}.

Again, Rvi can be stored efficiently by the lengths of the words it contains. By Proposition 4.9,∑n
i=1 |R

v
i | ∈ O (n logn). Moreover, as uvu with uv primitive is just a primitively rooted square when

v = ε , it follows that for certain values of v , we have
∑n

i=1 |R
v
i | ∈ Θ(n logn). Note that, in the

following, if v = ε, then Rv,i = Pi

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:16 H. Fernau et al.

Our next result extends in a non-trivial manner the result of Lemma 4.5. However, we continue

first with the description of some data structures and remarks that constitute the basis of this result.

The following observation is straightforward, but nevertheless useful later on.

Remark 1. For any word w of length n and a suffix w[i ..j] of w[1..j], where j is an integer with

j ≤ n, the maximum positive integer ℓ such thatw[i ..j]ℓ is a suffix ofw[1..j] is ℓ =
⌊
LCSw (j,i−1)

j−i+1

⌋
+ 1.

The most important data structure that we shall use in the remainder of this section is the

dictionary of basic factors (DBF, for short, see [11]). The DBF of a wordw is a data structure that

associates labels to the factors of the form w[i ..i + 2k − 1] (called basic factors), for integers i,k
with 0 ≤ k ≤ ⌊log(n)⌋ and 1 ≤ i ≤ n − 2k + 1, such that two identical factors get the same label

and we can retrieve the label of such a factor in O (1) time. The dictionary of basic factors of a

word of length n is constructed in O (n logn) time (see [11]). Generally, for every integer k the DBF

contains an array Ak [·], such that Ak [i] is the label ofw[i ..i + 2k − 1].
We observe that a basic factorw[i ..i + 2k − 1] occurs in a factorw[j ..j + 2k+1 − 1] either at most

twice or the positions where it occurs form an arithmetic progression of ratio per (w[i ..i + 2k − 1])
(see [26]). Hence, the occurrences of w[i ..i + 2k − 1] in w[j ..j + 2k+1 − 1] can be represented in

a compact manner, i. e., either by the two starting positions, or by the starting position of the

progression and its ratio. Moreover, the occurrences of w[i ..i + 2k − 1] in w[i ..i + 2k+2 − 1] can
also be represented in a compact manner, since they are given by the occurrences of the basic

factor w[i ..i + 2
k − 1] in the basic factors w[i ..i + 2

k+1 − 1], w[i + 2
k ..i + 2

k + 2
k+1 − 1] and

w[i + 2k+1..i + 2k+2 − 1]. According to this fact it is clear that one can preprocess the DBF of w
even more, so that we can answer in constant time the following queries:

(♣) “Given positive integers i and k , return the compact representation of the occurrences of

w[i ..i + 2k − 1] inw[i ..i + 2k+2 − 1].”

Moreover, fixing some word v , we can also produce in O (n logn) time a data structure answering

the following type of queries in O (1) time:

(♠) “Given positive integers i and k , return the compact representation of the occurrences of

w[i ..i + 2k − 1] inw[i − |v | − 2k+1.. i − |v | − 1].”

The following lemma follows directly from Theorem 8.1 of [27]. There it is shown that one can

construct, for a given word w of length n, in O (n) time, a data structure allowing to decide in

constant time whether some factor ofw is periodic, and, if yes, to compute its shortest period. To

test then if some factor of the given word is primitive it is enough to test whether that factor is

periodic and its shortest period divides its length, using the aforementioned data structure.

Lemma 4.10. [27] We can produce in O (n) time a data structure that allows us to test the primitivity

of each factor of a wordw of length n in O (1) time.

An obvious consequence of Lemma 4.4 is that if we consider all primitively rooted squares

starting at some position i with root lengths between ℓ and 2ℓ, then there are at most two of them,

since the root length of a third one must exceed 2ℓ. We seperately state this for a special case,

which shall be applied in the next proof (note that in the following lemmas the fact that we can

compute the squares in O (n logn) is a consequence of Lemma 4.5).

Lemma 4.11. Letw[i ..j] = v be a factor of a wordw of length n with per (w[i ..j]) ≤ j−i+1
5

. There

are at most two primitively rooted squares z2
1
and z2

2
which are prefixes ofw[i ..n] such that

j − i + 1 − per (w[i ..j]) ≤ |z1 | < |z2 | ≤ j − i + 1.

Finding these squares for each occurrences of v takes O (n logn).

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:17

Lemma 4.12. Let w[i ..j] = v be a factor of a word w of length n and j ′ a position such that

|w[j + 1..j ′]| ≤ j−i+1
5

. There are at most two primitively rooted squares z2
1
and z2

2
which are prefixes of

w[i ..n] such that

j − i + 1 ≤ |z1 | < |z2 | ≤ j ′ − i + 1.

Finding these squares for each occurrence of v takes O (n logn).

Now we are ready to state our extension of Lemma 4.5.

Proposition 4.13. Given two wordsw,v ∈ Σ∗ withw of length n, we can compute in O (n logn)
time all the sets Rvi associated tow , for all i with 1 ≤ i ≤ n.

Proof. We begin by constructing for the word wv the suffix array, and LCP and LCS data

structures. Furthermore we also construct the above DBF data structure for w , together with

its extensions (♣) and (♠), and, due to Lemma 4.10, a data structure that allows us to check

whether a factor ofw is primitive in constant time (in the following, we shall perform primitivity

checks without mentioning specifically that they only require constant time). We note that this

preprocessing requires time O (n logn).
In the following, let v ′ = v[1..per (v)], i. e., v = (v ′)σv ′′ for an integer σ and a prefix v ′′ of v ′.

We first assume that v ′ is small, more precisely, |v ′ | < |v |
6
, which implies that there might be many

occurrence of v inw (case A). The case |v ′ | ≥ |v |
6

already bounds the number of occurrences of v
inw and is somehow simpler; we shall discuss it later on (case B).

The general task that needs to be performed can be described as follows: we have to find all

occurrencesw[i ..i + |v | − 1] ofv inw that can be extended to both sides with the same factor u such

that uv is primitive (we denote such a factor u as extension (with respect to i)), or, more formally, for

each i with w[i ..i + |v | − 1] = v , we have to find all j with w[i − j ..i + |v | − 1 + j] = uvu and uv
primitive. Obviously, doing this in a naive way is too time consuming. The crucial improvement

of our procedure is due to the fact that, for an i with w[i ..i + |v | − 1] = v , we analyse, for

all integers k with 0 ≤ k ≤ ⌊log(n)⌋, all the possible candidates for extensions u that satisfy

2
k ≤ |u | ≤ 2

k+1
simultaneously (we shall denote such extensions by the term k-extension (with

respect to i)). Obviously, for a fixed k , a compact representation of these candidates can be efficiently

retrieved due to the previously computed DBF data structure with its extensions (♣) and (♠).

Case A: |v ′ | < |v |
6
.

In the following, let i , 1 ≤ i ≤ n, be such thatw[i ..i + |v | − 1] = v and let k , 0 ≤ k ≤ ⌊log(n)⌋, be
arbitrarily chosen. We shall show how we can find all the k-extensions with respect to i in time

proportional to their number. Consequently, by doing this for all occurrences of v in w (which

can be easily found by the LCP data structure forwv) and all k , 0 ≤ k ≤ ⌊log(n)⌋, we find all the

elements of the sets Rvi in time proportional to their total number, which, by Proposition 4.9, is

O (n logn).
We note that all k-extensions have the prefix t = w[i + |v |..i + |v | + 2k − 1] and start inside the

factorw[i − 2k+1..i − 1]; thus, a compact representation of all starting positions of the basic factor t
inw[i − 2k+1..i − 1], which is provided by the DBF data structure, contains the starting positions

of all k-extensions and is therefore a suitable set of possible candidates for k-extensions. We only

have to identify the actual k-extensions among these candidates and we shall next explain how

this can be done efficiently.

Firstly, we consider the special case when there are at most two occurrences of t inw[i−2k+1..i−1],
sayw[i1..i1 + 2

k − 1] andw[i2..i2 + 2
k − 1]. We can now easily check whether these candidates are

actual k-extensions as follows: for ℓ ∈ {1, 2}, check whetherw[iℓ ..i − 1] occurs at position i + |v |
(with an LCP query) and if so, whetherw[i ..i + |v | − 1]w[iℓ ..i − 1] is primitive or not.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:18 H. Fernau et al.

w[i ..j] = v

←−−−−−−−−−−−−− 2
k+1 −−−−−−−−−−−−−→ ←−−−−−−−−−−−−− 2

k+1 −−−−−−−−−−−−−→

t
t

t

w[j + 1..j + 2k] = t
. . .

Fig. 2. Occurrences of t inw[i − 2k+1..i − 1] indicate the start positions of candidates for k-extensions (note
that here j = i + |v | − 1).

Next, we assume that the occurrences of t inw[i−2k+1..i−1] are given as an arithmetic progression

(for an illustration see Fig. 2), which starts on position i0 and has ratio p. Thenw[i0..i − 1] = xαx ′y ′,
where |x | = p, x ′ is a prefix of x with |x ′ | < |x |, and xαx ′ is a word of period p that cannot be

further extended to the right without breaking the period, i. e., if y ′ , ε , then y ′[1] , x[|x ′ | + 1]. In
the following, we consider the two cases y ′ , ε and y ′ = ε separately and we shall start with the

former, which is the simpler one.

Case A.1: y ′ , ε .
In this case, clearly, every k-extension with respect to i is not |x |-periodic. Let β be such that x βx ′′

is the longest |x |-periodic prefix of w[i + |v |..n], with x ′′ a prefix of x . If β > α , then we do not

have any k-extension with respect to i . If we would have one, then it would either be |x |-periodic
(and be a factor of x βx ′′, a contradiction), or it should start with x βx ′′ which is a contradiction to

the fact that every factor ofw[i0..i − 1] starts with at most xα and α < β . So, β ≤ α . By a reasoning

similar to the above, we get that x ′ = x ′′ (or, again, the periodic prefixes of the two sides of the

k-extension would not match) and that the extension should be x βx ′y ′. We check whether x βx ′y ′

is a suffix ofw[1..i − 1] and a prefix ofw[i + |v |..n], and if x βx ′y ′v is primitive (in constant time,

using the data structures we built). If yes, we found the single correct k-extension. (Case A.1) ⋄
Case A.2: y ′ = ε .
In this case, w[i0..i − 1] = xαx ′. This implies that the candidates for k-extensions are the words
xγx ′, with γ ≤ α and γ ≥ |t |/|x | (as at least one t should be contained in u). We shall check which

of these are actual k-extensions by first determining (in constant time) all the values γ , for which
vxγx ′ is not primitive, i. e., vxγx ′ = zs for some primitive word z. Then we can output the values

of γ ≥ 1 for which vxγx ′ is primitive in time proportional to their number.

As stated in the preliminaries, a word is primitive (respectively, non-primitive) if and only if all

its conjugates are also primitive (respectively, non-primitive). Therefore, instead of looking for

the values of γ such that vxγx ′ is not primitive, we look for the values of γ such that xγx ′v is not

primitive.

Recall that v = (v ′)σv ′′, where |v ′ | = per (v). Then we can also write v = v2 (v1)
σ
where v1 is a

primitive suffix of v with |v1 | = per (v), by just reading the period of v from right to left. Therefore,

we are interested in the values γ ≤ α such that xγx ′v2 (v1)
σ
is not primitive.

First we check in constant time whether xγx ′v2 (v1)
σ
is primitive or not for |t |/|x | ≤ γ ≤ 5. This

can be done in constant time, using the data structures we constructed. So, from now on we only

look for γ ≥ max{|t |/|x |, 6} such that xγx ′v2 (v1)
σ
is not primitive.

Accordingly, in the following we identify under which conditions can the word xγx ′v2 (v1)
σ
be

written as zs with z primitive.

Let us first assume that xγx ′v2 (v1)
σ = zs with x , z , v1. If s ≥ 4, then either xγx ′ shares with

zs a prefix of length at least |x |+ |z | orv2 (v1)
σ
shares with zs a suffix of length |z |+ |v1 |. In any case,

we can apply Theorem 4.7 to get that one of x , v1, or z is not primitive, a contradiction. Therefore,

s ≤ 3. If s = 3, then |z |/2 ≥ max{|x |, |v1 |}, as both γ and σ are at least 6. If |xγx ′ | ≥ 3|z |/2 then
we can apply Theorem 4.7 to xγx ′ and z3, that share a prefix of length at least 3|z |/2 ≥ |z | + |x |,

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:19

and get that z is not primitive, a contradiction. If |v2 (v1)
σ | ≥ 3|z |/2 then we can apply Theorem

4.7 to v2 (v1)
σ
and z3, that share a suffix of length at least 3|z |/2 ≥ |z | + |v1 |, and get that z is not

primitive, again a contradiction. So s , 3. If s = 2 the analysis is finer.

If |xγx ′ | ≥ |z |+ |x |, we can apply again Theorem 4.7 to xγx ′ and z2 and get that z is not primitive;

similarly, if |v2 (v1)
σ | ≥ |z | + |v1 |. So, in those cases we reach contradictions. Therefore, we can

assume |xγx ′ | ≤ |z | + |x | and |v2 (v1)
σ | ≤ |z | + |v1 |. Let us now assume that |v2 (v1)

σ | ≤ |xγx ′ |
(the other case can be treated identically). Then, it follows that z = xγ

′

x ′′, where γ ′ is either γ or

γ − 1 and x ′′ is a prefix of x . Equivalently, z = x ′′c x
γ ′
c , where xc is a conjugate of x . Also, z has the

suffix v2 (v1)
σ
(since xγx ′v2 (v1)

σ = z2 and we assume that |v2 (v1)
σ | ≤ |xγx ′ |), and, moreover, we

have on the one hand that |v2 (v1)
σ | = 2|z | − |xγx ′ | ≥ 2|z | − (|z | + |x |) = |z | − |x | ≥ 4|x | and on

the other hand that |v2 (v1)
σ | ≥ 6|v1 |. Therefore, we can apply Theorem 4.7 to z = x ′′c x

γ ′
c and its

suffix v2 (v1)
σ
, and get that xc = v1 or either xc or v1 would not be primitive (which would yield

a contradiction). Because (σ + 1) |v1 | ≥ |v2 (v1)
σ | ≥ |z | − |x | ≥ (γ ′ − 1) |x | we get σ + 1 ≥ γ ′ − 1.

As xγ
′+1 ≥ |z | ≥ σ |v1 |, we get that γ

′ + 1 ≥ σ . That is, σ + 2 ≥ γ ′ ≥ σ − 1. This formula gives

us four variants for γ ′, and for each of them we have two respective variants for γ , such that

xγx ′v2 (v1)
σ
could be a square. We try in constant time each variant, and store the values of γ for

which xγx ′v2 (v1)
σ
is indeed a square, thus not primitive.

We now consider the case xγx ′v2 (v1)
σ = zs with x = z. It follows that v2 (v1)

σ = z ′′zr with
x ′z ′′ = x = z. If r ≥ 2 we can apply Theorem 4.7 and get that either z = v1 or z is not primitive

(a contradiction). In the case z = x = v1 it follows that x
γx ′v2 (v1)

σ
is not primitive if and only

if x ′v2 = x (which can be checked in constant time), and if this holds then xγx ′v2 (v1)
σ
is not

primitive for all γ . If r = 1 and |z ′′ | ≥ |v1 |, then we can still apply Theorem 4.7 to get that z is not
primitive, a contradiction. The only remaining case is r = 1 and |z ′′ | < |v1 |. In this case, as we

know x and x ′, so also z ′′, we can determine in O (1) time, by LCP-queries, whether v = z ′′x . If
yes, then, once again, xγx ′v2 (v1)

σ
is not primitive for all γ .

The last case, xγx ′v2 (v1)
σ = zs with z = v1 is rather similar. This time, we get that xγx ′ = zrz ′,

with z ′v2 = v1 = z. If r ≥ 2 we once again get that z = x , and the analysis is done as above. If

r = 1 and |z ′ | ≥ |x | we get that z is not primitive, a contradiction. Finally (and a bit different to the

above), if r = 1 and |z ′ | < |x |, then xγx ′ must be equal to v1z
′′
(whose length is known). Thus, as

we know |x | and |x ′ |, we get the value of γ . We check by an LCP query whether xγx ′ = v1z
′′
, and,

if yes, we store that xγx ′v is not primitive.

By the explanations above, it follows that this analysis takes constant time. Once it is completed,

we output the values γ for which xγx ′v (and, equivalently, vxγx ′) is primitive. (Case A.2) ⋄

Case B: |v ′ | ≥ |v |
6
.

It remains to consider the case that the period ofv is large, i. e., |v ′ | ≥ |v |
6
. In this case, the number of

occurrences ofv inw is at most
6n
|v | , which is O (

n
|v |). For each occurrencev = w[i ..i+ |v |−1], we can

first try naively all the factorsu = w[i+ |v |..j]with |u | ≤ 4|v | and check whetheru = w[i−|u |..i−1]
and vu is primitive. In this way, we get all extensions u with the property |u | ≤ 4|v |. In order to

compute the remaining extensions, we proceed similarly to case A.

More precisely, for an i withw[i ..i + |v | − 1] = v , we analyse, for all integers k with log(4|v |) ≤
k ≤ ⌊log(n)⌋, all the possible candidates for extensions u around w[i ..i + |v | − 1] that satisfy

2
k ≤ |u | ≤ 2

k+1
simultaneously. Just like before, let t = w[j + 1..j + 2

k
], where j = i + |v | − 1.

Clearly, t is a prefix of the factor u we look for. Using the DBF we retrieve the occurrences of t in
w[i − 2k+1..i − 1]. If they are a constant number only, we can check each of them to see if it leads

to a valid extension uvu with uv primitive. So let us assume that, in fact, they form an arithmetic

progression with ratio p and that x is the prefix of length p of t . Let i0 be the position where the first

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:20 H. Fernau et al.

t in that progression occurs. Then w[i0..i − 1] = xαx ′y ′, where x ′ is a prefix of x with |x ′ | < |x |,
and xαx ′ is a word of period p that cannot be further extended to the right without breaking the

period, i. e., if y ′ , ε , then y ′[1] , x[|x ′ | + 1]. If y ′ , ε , we follow the same analysis as in case A.1

above. So let us consider next the case y ′ = ε .
Just like in case A.2 of the previous analysis, we want to identify the values |t |/|x | ≤ γ ≤ α such

that xγx ′v is primitive. Once again, we actually determine (in constant time) the values γ such

that xγx ′v is not primitive and output the others. For γ ≤ 5 we proceed just as in the case A.2

above: check whether each such xγx ′v is primitive in constant time. If γ ≥ 6, we try to see whether

xγx ′v = zs for some word z and exponent s . Now, as we only look for the case when |u | ≥ 4|v |, we
have that xγx ′ should be at least as long as 4|v |. Therefore, if s ≥ 4, xγx ′ has z2 as a prefix. We can

once again apply Theorem 4.7 and get that x should be equal to z. Now, xγx ′v = zs , with s > 3, if

and only if v = x ′′zr for some r and x ′x ′′ = x . Clearly, if this holds, then we have that xγx ′v is

a power of z for all values of γ . If s = 3, then |z |/2 ≥ |x | and xγx ′ and z2 have a common prefix

of length at least 3|z |/2. Like before, we could apply Theorem 4.7 and get a contradiction to the

primitivity of z. Finally, if s = 2 we proceed as follows. If xγx ′ would be longer than |z | + |x | we
could once more apply Theorem 4.7 and get the contradiction. So, we look for some z which is

longer than xγ−1x ′. This also means that |v | + |x | > |z |. So |v | ≥ |x |(γ − 2) and |x |(γ + 1) ≥ |v |. We

get that |v |/|x | + 2 ≥ γ ≥ |v |/|x | − 1. We now check for which such values of γ is the word xγx ′v
indeed a primitively rooted square. In the end we determined all values of γ for which xγx ′v is not

primitive, and we can output the others.

This analysis takes constant time, and the time needed to output all γ such that xγx ′v is primitive

takes time proportional to their number. We repeat this for all k with log(4|v |) ≤ k ≤ ⌊log(n)⌋ and
obtain all factors uvu with uv (and vu) primitive.

From the explanations above, it follows that the time needed to do this is upper bounded by the

preprocessing time and the size of the output. So, our algorithm runs in O (n logn) time. □

Observe now that when we construct for a wordw the sets Pi , as in Lemma 4.5, we can actually

store in them the elements ordered according to their lengths (this is implemented at construction

time). Accordingly, each Pi is an array where Pi [k], for some k with k ≤ 2 logn, stores the length
of the kth element of the ordered set Pi . Therefore, for the simplicity of the exposition, we will say

that a suffix t ofw[1..i] is in Pi if, in fact, |t | ∈ Pi . Obviously, these two ways are equivalent, but
our implementation of the sets Pi is more efficient, as we just store in them numbers that can be

represented in one memory word (lengths), instead of actual strings.

Lemma 4.14. If two occurrences of a primitively rooted square t2, with |t | = ℓ, end on positions i
and j of some word, and Pi [k] = ℓ, for some k ≤ |Pi |, then Pj [k] = ℓ.

Proof. A word x2 with x primitive and |x | < ℓ is a suffix ofw[1..i] if and only if it is a suffix of

w[i − ℓ + 1..i]2 if and only if it is a suffix ofw[1..j]. □

In the following we show a result regarding the periodicity of instances of patterns.

Lemma 4.15. Let t be a primitive word, let α ∈ (Σ∪ {x })∗ be a one-variable pattern with α = α ′xvx ,

where v is a prefix of tω , let ℓ = ⌊ |v |
|t | ⌋, and let w ∈ Σ+ with vw = t ℓ+2. Moreover, for every u ∈ Σ+,

define the substitution hu : {x } → Σ+ by h(x) = u. Then one of the following statements holds:

(1) if hw (α) is |t |-periodic then hwtk (α) is |t |-periodic for every k ≥ 0;

(2) if hw (α) is not |t |-periodic then, for every word u ending with t , there exists at most one value

k ≥ 0 such that hwtk (α) is a suffix of u.

Moreover, in the second case, the value k can be determined in O (m) time, provided that we have LCP

data structures forwα , wherem is the number of one-variable blocks occurring in α .

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:21

Proof. For the rest of the proof, assume α = vpxvp−1x · · ·v1xvx . Moreover, for every i , 1 ≤ i ≤ p,
let αi = vixvi−1x · · ·v1xvx be the suffix of α starting with vi and letwi = viwvi−1w · · ·v1wvw be

its image under hw , that iswi = hw (αi); furthermore, letw0 = vw .

Case 1: hw (α) is |t |-periodic.
As vw = t ℓ+2, we get that v = t ℓt ′ and w = t ′′t where t ′t ′′ = t . We shall show by induction, for

every i , 1 ≤ i ≤ p − 1, thatwi is a power of t . As base of the induction, we note that, by assumption,

w0 is a power of t . Now let i ≥ 1 and let us assume that wi−1 is a power of t . This means that

wwi−1 = t ′′ts , for some s ≥ 2. Now ifwi = viwwi−1 is not a power of t , then vi does not have the
form t jt ′, for some j, which implies that the suffix t of w would be contained inside a t2 factor
(induced by the periodicity), a contradiction to the primitivity of t by Theorem 4.8. Thus,wi is a

power of t . In particular, this implies that, for all i with 1 ≤ i ≤ p − 1, viw is a power of t and vpw
is a suffix of t jt ′t ′′t . Using this structural information on the words vi and v , we can clearly see

that also hwtk (α) is |t |-periodic, for every k ≥ 0. Hence, Point 1 of the lemma holds.

Case 2: hw (α) is not |t |-periodic.
Let u be some word ending in t with ut being its longest suffix that is |t |-periodic. If hw (α) is not
|t |-periodic, then there either exists d such that wd is not |t |-periodic and wwd−1 is |t |-periodic
(†) or there exists d such that wd is |t |-periodic and wwd is not |t |-periodic (‡). If property (†)

applies, then, by a similar argument as in the above case, hwtk (αd) remains not |t |-periodic, while
hwtk (xαd−1) is |t |-periodic, for all k ≥ 0. In other words, when assigning to x a factor t ′′tk , the
period |t | of hwtk (α), read from right to left, breaks inside vd . Thus, there is only one possible

candidate for k with the property that hwtk (α) is a suffix ofu, namely the greatest integer for which

hwtk (xαd−1) is at most as long as ut and hwtk (αd) is longer than ut . That is, the points where the
periods |t | of hwtk (α) and u break must align. Analogously, if we have property (‡), then the period

breaks this time inside aw , and a similar analysis can be performed. The only possible candidate

for k is now the greatest integer for which hwtk (αd) is at most as long ut and hwtk (xαd) is longer
than ut . Consequently, Point 2 of the lemma holds.

In order to find k efficiently, we can first find t ′ such thatv = vℓt ′ and check which is the smallest

d such thatvd has not the form t jt ′; note that if x2 is a factor of α then t ′must be the empty word, so

the factorvd we look for will be exactly the rightmostvi -factor which is not a power of t . Generally,
finding vd can be done in O (m) time using LCP queries by just considering each of the vi -factors

and checking whether it starts with t , has period |t |, and |vi | − ⌈
|vi |
|t | ⌉ |t | = |t

′ |. Once we found this

factor vd , we know exactly which is the |t |-periodic suffix of hw (α): it either starts inside vd or in

thew preceding it. In the first case, property (†) from above holds. In the second one, property (‡)

holds. We can check in O (1) time in which case we are. More precisely, if vd is |t |-periodic and is a

suffix of t jt ′ for some j, then (‡) holds, otherwise (†) holds. Let ut be the suffix of u which is |t |-
periodic. In the case when (†) holds, we compute k such that hwtk (αd) is at most as long as |ut | and
hwtk (vdαd) is longer than |ut |, and this is our candidate k . In the case when (‡) holds, we compute

k such that hwtk (vdαd) is at most as long as |ut | and hwtk (αd+1) is longer than |ut |, and this is our

candidate k . These computations can be done in O (1) time, because they just require solving an

inequality with the unknown k ; for instance, in the first case, we compute the maximum k such that

|hwtk (vdαd) | = |t | |k |(d + 1) + |vdvd−1 · · ·v1v | ≥ |ut | ≥ |t | |k |(d + 1) + |vd−1 · · ·v1v | = |hwtk (αd) |.
Once this k is found, we have determined exactly the suffix of u which is the image of x , and, as we
have LCP structures for uα , we can check from right to left whether hwtk (α) really is a suffix of u,
in O (m) time. This concludes the proof of our lemma. □

We are now ready to solve thematching problem for non-cross patterns. Notice that, as mentioned

in Section 3, an O (n4) algorithm is presented in [39], which is automaton-based, but a dynamic

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:22 H. Fernau et al.

programming algorithm, running in O (mn3) time for a wordw of length n and a pattern of length

m, is also straightforward. This can be achieved, e. g., by creating some data structures that allow

us to compare factors ofw in constant time (e.g., LCP data structures) and then by simply filling in

the following table (notice that for non-cross patterns, when reading the pattern from left to right,

there is always one current variable):

T [i, j,k, ℓ] =

1 if α[1..i] matchesw[1..j] such that

the current variable is assignedw[k ..ℓ],

0 else.

Next, we are considerably improving on these simple algorithms.

Theorem 4.16. The matching problem for Patnc is solvable in O (mn logn) time, where w is the

input word of length n andm is the number of one-variable blocks occurring in the pattern.

Proof. Let α ∈ Patnc with var(α) = {x1,x2, . . . ,xs } be our pattern. We construct the LCP data

structure for the wordwα and the sets Pi as in Lemma 4.5, as well as all the sets Rvj for all positions

j ofw and v a maximal factor of terminals of α , as in Lemma 4.13. This preprocessing can be clearly

implemented in O (mn logn).
Clearly, α can be factorised as α = w0Πi=1,s (αiwi), where, for every i , 1 ≤ i ≤ s , var(αi) = {xi },

αi starts and ends with xi , andwi is a maximal terminal factor. For every k , 0 ≤ k ≤ s − 1, we set
βk = w0Πi=1,k (αiwi). Let pi denote the number of one-variable blocks from αi .

We use a dynamic programming approach to test whether α matchesw . More precisely, for each

i with 1 ≤ i ≤ s , we identify all j with 1 ≤ j ≤ n, such that βi−1αi matchesw[1..j].
The general idea is the following. Once we identified all ways to match βi−2αi−1 to a factor

w[1..j ′], we check, in constant time for each such j ′, whetherwi−1 matches a stringw[j ′ + 1..j ′′].
After this step we identified all j ′′ such that βi−1 matches w[1..j ′′]. We then try to see, for all

possible j, whether αi matches a factorw[j ′′ + 1..j] such that βi−1 matchesw[1..j ′′].
With a non-trivial quadratic time preprocessing [28], one could check this matching in constant

time. This would lead to a matching algorithm for non-cross patterns running in O (n2m) time.

However, a faster strategy exists and we present it in the following.

Based on the combinatorial toolbox we developed, we can first find some basic assignments

for the variable xi occurring in the pattern αi . Suppose that we want to check whether βi−1αi
matchesw[1..j]. Assume, for instance, that αi ends with xivxi , for some maximal factor of terminals

v . Here, we see, in the first case, how xi can be assigned to a suffix of w[1..j] such that vxi is
mapped to a primitive word (so that βi−1αi is mapped tow[1..j]), and, in the second case, for each

primitively rooted square t2 ending on position j, how xi can be assigned to a suffix of w[1..j]
such that vxi is mapped to a repetition of t of minimum exponent and βi−1αi is mapped tow[1..j].
There are O (logn) possibilities to be tried in these two cases, for each j . Then, by a second dynamic

programming, we try to increase the exponent of t for some of the basic assignments of vxi , i.e.,
to extend the respective assignments of vxi , while still ensuring the match between βi−1αi and
w[1..j]. In this way, we identify longer matches of αi as suffix ofw[1..j] (while βi−1 matches shorter

prefixes ofw[1..j]), for all j, in overall time O (pin logn).
Before we explain the details of the algorithm, we state two claims, which explain all the ways

αi may be mapped to a suffix of w[1..j], and essentially prove the correctness of our dynamic

programming algorithm. The presentation is structured following a case distinction on the form of

αi .
In the following, we assume that for some i , 1 ≤ i ≤ s−1, a substitutionh : {x1,x2, . . . ,xi−1} → Σ∗

is already defined and j, 1 ≤ j ≤ n, is arbitrarily chosen. Moreover, by hz with z ∈ Σ+, we denote
the substitution h extended by h(xi) = z.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:23

Claim 1. Assume that

αi = xi .

Then, we can find a wordvi ∈ Σ
+
such thatw[1..j] = hvi (βi−1αi) if and only if one of the following

holds:

i) w[1..j − 1] = h(βi−1) in this case, we set vi = w[j].
ii) w[1..j − 1] = h(βi−1)v

′
i and, in this case, we set vi = v

′
iw[j], with v ′j ∈ Σ

+
.

The claim follows immediately. Note that, in the cases described by this claim, asw[1..j] = h(βi−1)vi
and αi = x , we get trivially thatw[1..j] = hvi (βi−1αi).

Claim 2. Assume that |αi |xi ≥ 2, i.e.,

αi = α
′
ixivxi , for some v ∈ Σ∗ and α ′i ∈ (Σ ∪ {xi })

∗.

Then, we can find a wordvi ∈ Σ
+
such thatw[1..j] = hvi (βi−1αi) if and only if one of the following

holds, with j ′ denoting j − |hvi (αi) |:

i) vi ∈ R
v
j (so vvi is primitive),w[1..j ′] = h(βi−1), and hvi (αi) = w[j ′ + 1..j].

ii) vvi = t ℓ+k for some word t ∈ Pj , where ℓ = ⌊
|v |
|t | ⌋ and k determined as follows:

a) k = 1, if hv−1t ℓ+1 (αi) is a suffix ofw[1..j],w[1..j ′] = h(βi−1), and hvi (αi) = w[j ′ + 1..j].
b) if hv−1t ℓ+2 (αi) is |t |-periodic, then k can be any integer greater than 1 such thatw[1..j ′] =

h(βi−1),w[j ′ + 1..j] is |t |-periodic, and hvi (αi) = w[j ′ + 1..j].
c) if hv−1t ℓ+2 (αi) is not |t |-periodic, then k is the only integer greater than 1 such that

hv−1t ℓ+k (αi) is a suffix ofw[1..j],w[1..j ′] = h(βi−1), and hvi (αi) = w[j ′ + 1..j].

The if-direction of the Claim is obvious. If, for some word vi , we havew[1..j] = hvi (βi−1αi), then
either vi ∈ R

v
j , which implies that case i) holds, or vi < R

v
j , which means that vvi = t ℓ+k for some

word t ∈ Pj and case ii) applies. Moreover, if k = 1, then we are in case ii)a), while for k > 1

Lemma 4.15 implies that either case ii)b) or ii)c) holds.

Now we describe our dynamic programming algorithm. Assume we identified the prefixes

w[1..j] ofw that can be the image ofw0Πk=1,i−2 (αkwk)αi−1. Initially, only the prefix of length 0 of

w matches the prefix of length 0 of α . Using the LCP data structures built for wα we can test in

O (1) time for each j, such that w[1..j] of w can be the image of w0Πk=1,i−2 (αkwk)αi−1, whether
wi occurs on position j + 1. After this linear search, we get the prefixes w[1..j] of w that can be

the image ofw0Πk=1,i−1 (αkwk). Next, we try to see which of these prefixes can be extended with a

factor matching αi .
Following, our claims, we do a case analysis on the form of αi . Recall that each part of our analysis

has two phases: in the first one we find some basic assignments for xi , the variable occurring in αi ,
while in the second phase we try to extend these basic assignments to more complex ones. Also,

we denote by hvi (αi) the image of αi under the substitution that replaces xi by vi .
If αi = xi then in the first phase we conclude thatw[1..j] can be the image ofw0Πk=1,i−1 (αkwk)αi

if w[1..j − 1] can be the image of w0Πk=1,i−1 (αkwk). So, in this case, the basic assignments of xi
consist in a single letter. This phase is based on Claim 1.i). In the second phase, we extend these

assignments following Claim 1.ii). More precisely, for j from 1 to n, we decide thatw[1..j] can be

the image of w0Πk=1,i−1 (αkwk)αi if w[1..j − 1] can be the image of w0Πk=1,i−1 (αkwk)αi . That is,
when matchingw[1..j − 1] andw0Πk=1,i−1 (αkwk)αi we assigned some factor v ′i to xi , and now we

appendw[j] to v ′i , and assign the value vi = v
′
iw[j] to xi , and obtain a matching betweenw[1..j]

andw0Πk=1,i−1 (αkwk)αi .
The analysis in the case above takes O (n) time for each αi that consists in a single variable.

If αi = α ′ixvx we follow Claim 2. In the first phase, we note that w[1..j] can be the image

of w0Πk=1,i−1 (αkwk)αi if there exists t ∈ Rvj such that w[1..j − |ht (αi) |] can be the image of

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:24 H. Fernau et al.

w0Πk=1,i−1 (αkwk) and ht (αi) is a suffix of w[1..j]. This is one basic assignment that we will not

try to extend. Similarly, and still in the first phase, we also look for assignments vi of xi that make

vvi a repetition. So, we consider t ∈ Pj with Pj [d] = t , and analyse the case when vx is mapped

to a repetition of t . We further take ℓ = ⌊ |v |
|t | ⌋ and we will have that v should be a prefix of t ℓ+1,

as vx is assumed to be mapped to a power of t . So, assume v is indeed a prefix of t ℓ+1, of length
at least ℓ |t | and let vi = v

−1t ℓ+1. For each j, we can check in O (pi) time as in the proof of Lemma

4.15, if hvi (αi) is a suffix of w[1..j], and, if yes, whether w[1..j − |hvi (αi) |] can be the image of

w0Πk=1,i−1 (αkwk). If also the last check returns true, we obtained a matching betweenw[1..j] and
w0Πk=1,i−1 (αkwk)αi . Again, this gives us a basic assignment for xi that we will not extend in the

following. More important, we take vi = v
−1t ℓ+2 and check, again in O (pi) time as in Lemma

4.15, if hvi (αi) is |t |-periodic. If not, we determine as in the respective lemma the unique value k ′

such that hv ′i (αi) is a suffix of w[1..j], with v ′i = v
−1t ℓ+k

′

, and if this k ′ exists we check whether

w[1..j − |hv ′i (αi) |] can be the image of w0Πk=1,i−1 (αkwk); if the answer to this check is positive,

we store this match. If hvi (αi) is |t |-periodic, we check whether it is a suffix of w[1..j], for each
j, and, if yes, whether w[1..j − |hvi (αi) |] can be the image of w0Πk=1,i−1 (αkwk). If also the last

check returns true, we obtained a matching between w[1..j] and w0Πk=1,i−1 (αkwk)αi and store

in a matrix that there exists a match between w[1..j] and w0Πk=1,i−1 (αkwk)αi with vvi a power
of Pj [d] = t (so, essentially, we store j, i , and d). This last assignment of xi , and the matching it

defines, will be extended in the second phase. The checks needed to implement this matching take

O (pi logn) time for each j from 1 to n.
Now, we move to the second phase, where we try to extend some of the assignments determined

in the first step. Assume we want to check, for j from 1 to n, whether w[1..j] can be the image

of w0Πk=1,i−1 (αkwk)αi with vx mapped to a power of some t ∈ Pj , with Pj [d] = t . Let e = |αi |xi .
We check whether we concluded (in the first phase, or in previous iterations of this phase) that

w[1..j − e |t |] can be the image of w0Πk=1,i−1 (αkwk)αi , such that vxi is mapped to a power of

Pj−e |t |[d], whether the image of αi under this substitution is |t |-periodic, and whether Pj−e |t |[d] = t .
If both checks are true, we conclude and store thatw[1..j] can be the image ofw0Πk=1,i−1 (αkwk)αi
with vx mapped to a power of Pj [d] = t (again, we store j, i , and d). This follows Claim 2.ii). That

is, when matchingw[1..j − e |t |] andw0Πk=1,i−1 (αkwk)αi we assigned some factor v ′i = v
−1t ℓ+k to

xi , and now we append t to v ′i , and assign vi = v
′
i t to xi , and obtain a matching betweenw[1..j]

and w0Πk=1,i−1 (αkwk)αi . The time complexity of the processing we do in this second phase is

O (pi logn) for each j from 1 to n.
The two claims we made show how one can decide as described above whetherw[1..j] can be

the image of βi , knowing the prefixes of w which are the image of βi−1. We do not describe this

dynamic programming in detail (i.e., we do not give the code), as it is just a simple (yet, tedious)

exercise.

We stress again that for an efficient implementation, one needs to construct the sets Pj , for all

j with 1 ≤ j ≤ n, and R
wpi ,i
j , for all j with 1 ≤ j ≤ n, and i such that αi = x

ℓ0,i
i Πk=1,pi (wk,ix

ℓk,i
i),

as well as LCP data structures forwα . But all these preprocessing steps can be done in less than

O (mn logn) time.

To conclude, we can find, for all i from 1 to s , in O (npi logn) time all the positions j such that

w0Πk=1,i−1 (αkwk)αi matchesw[1..j], where pi is the number of one-variable blocks of αi . Hence
we have that α matches to w if there exists a position j such that w0Πk=1,s−1 (αkwk)αℓ matches

w[1..j] andw[j + 1..n] = wℓ . The total time is, clearly, O
((∑

i=1,s pi
)
n logn

)
. This shows that the

matching problem for non-cross patterns can be solved in O (mn logn) time. □

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:25

4.3 Patterns with bounded scope coincidence degree
We now move on to the general case of patterns with bounded scope coincidence degree. The

matching problem for Patscd≤k can be still solved by a dynamic programming approach.

Theorem 4.17. The matching problem for Patscd≤k is solvable in O
(

mn2k

((k−1)!)2
)
time, wherew is the

input word of length n andm is the number of one-variable blocks occurring in the pattern.

Proof. Let α = w0Πi=1,m (ykii wi) (where the yi ’s are variables and thewi ’s are maximal terminal

factors) be a pattern with scd(α) ≤ k ; we want to decide whether α matchesw . Note that we do

not necessarily have yi , yj for i , j.
By definition, a variable y is called active at a position ℓ of α if y occurs both in α[1..ℓ] and in

α[ℓ..|α |] (if y occurs on position ℓ, then it is active at position ℓ, even if this is its only occurrence);

in other words, a variable y is active on each position contained in its scope, and only on those

positions.

For every j with 1 ≤ j ≤ m, we denote α j = w0Πi=1, j (y
ki
i wi) and ℓj = |α j |. For all j with j ≤ m,

we produce a list of the active variables at position ℓj ; this takes O (|α |m) time. We also build

LCP-data structures forwα . This allows us, for instance, to check whether a certain factorwi occurs

at a position ℓ ofw in O (1) time.

We define the n ×m matrixM[·][·] such thatM[i][j] contains a representation of all the possible

substitutions for the active variables at position ℓj in substitutions mapping α j tow[1..i]. We first

explain how this representation is defined, and then show how this matrix is computed.

Firstly, let us note that if at most k − 1 variables are active at position ℓj , then we store them by

the starting and ending positions of their images, in the order of their occurrence in the pattern;

in this way, the positions we store are also ordered, as the images of the variables also occur in

the same order as the variables. Hence, we need to store a list of 2k − 2 ordered indices less than i;

therefore, we may have to store inM[i][j] at most

(
i

k−1

)
2

different lists, each containing the indices

corresponding to a substitution.

Secondly, if k variables are active at position ℓj , then one of the active variables is yj . Moreover,

for the image of yj we do not need to store the ending position. Once we know the starting position

of the image of the block y
kj
j , say i ′, we can get its ending position by noting that the image of

α j is w[1..i] and this image ends with the image of y
kj
j w j . So, the image of yj occurs between i ′

and i ′ +
i−|w j |−i′+1

kj
− 1. Therefore, when exactly k variables are active at position ℓj we only need

to store 2k − 1 indices: the starting and ending positions of the images of all the active variables

except yj , in order of their occurrence, and the starting position of the image of y
kj
j . This means

thatM[i][j] stores at most

(
i

k−1

) (
i
k

)
distinct lists of 2k − 1 indices.

To summarise, when k variables are active at ℓj we need to store 2k − 1 indices inM[i][j], and,

thus, there are

(
i
k

) (
i

k−1

)
possible lists that may be the actual list stored on this position of the matrix.

When at most k − 1 variables are active at ℓj , the lists stored in M[i][j] contain at most 2k − 2

indices; so there exist at most

(
i

k−1

)
2

lists that may appear asM[i][j]. This holds because an upper

bound on the number of such lists is obtained by considering all the possibilities of choosing the

numbers on the odd positions (starting positions) and the numbers on the even positions of the list

(ending positions of the images of the variables), independently.

Next, we address the question of how to represent efficiently such collections of lists. Assume

that we want to store a collections of lists, each containing p indices i1, i2, . . . , ip between 1 and i ,

such that i2h−1 ≤ i2h , for 1 ≤ h ≤
p
2
, and i2h < i2h+1, for 1 ≤ h ≤

p−1
2
.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:26 H. Fernau et al.

We construct a tree (called (i,p)-tree in the following) with p + 1 levels 0, 1, . . . ,p. On the level

0 we have the root labelled with 0. Under this root, we insert in the tree, one bye one, as paths,

all the possible lists of exactly p indices between 1 and i that fulfil the condition above, in their

natural lexicographical order on Np . When inserting a new list, we basically add to the tree a new

path starting with the root and whose further nodes are labelled with the indices of the list, in

increasing order. If needed, we add new nodes and edges to the tree: we first traverse the prefix of

the list that already appears as a path in the tree, and, from the node we reached in this way, we

insert a new path labelled with the rest of the indices in the list. For simplicity, we keep in a node

an array of pointers to its children, in increasing order of their labels. More precisely, if a node is

labelled with r and it is on an odd level, then its children will be labelled with r , r + 1, r + 2, . . .;
consequently, the jth pointer in the array points to the child labelled with r + j − 1. If a node is
labelled with r and it is on an even level, then its children are labelled with r + 1, r + 2, . . .; thus,
the jth pointer in the array points to the child labelled with r + j. Moreover, it is not hard to see

that if a node is on the odd level p − ℓ, then the maximum label of its children is i − ⌈(ℓ − 1)/2⌉;
if a node is on the even level p − ℓ, then the maximum label of its children is i − ⌈ℓ/2⌉. The time

needed to construct this tree is upper bounded by the number of paths the tree contains. Thus, this

upper bound is O (
(
i
k

)
2

) if p = 2k or O (
(
i
k

) (
i

k−1

)
) if p = 2k − 1.

It is worth noting that there is a bijective correspondence between the leafs of an (i,p)-tree
and the lists of exactly p indices that fulfil the condition stated before the definition of (i,p)-trees;
basically, a leaf corresponds to the labels of the nodes along a path from the root to that leaf in the

tree (without the root), and vice versa.

Clearly, to store a collection I of lists containing p indices between 1 and i like above, we can use

such an (i,p)-tree where we just mark in it the leaf corresponding to each list in I (so, we have an
(i,p)-tree with some marked leaves instead of the collection I). With this representation, we can

test whether a list is in the collection I in O (p) time (traverse the path whose labels correspond

to the list and check if the leaf at the end of this path is marked), we can insert or delete a list in

O (p) time (traverse the path whose labels correspond to the list and mark or, respectively, unmark,

the leaf at the end of this path). By keeping a linked list of the leaves, we can identify the marked

leaves in time proportional to the number of leaves of an (i,p)-tree, so in O (
(
i
p

)
2

) time. Given a

leaf, we can retrieve the list that defines it by following the path from that leaf to the root, in O (p)
time (provided that we store also child to father links in our tree). For simplicity, the root of a tree

is said to be also marked if at least one of the leaves is marked. As an example, see Figure 3.

0

1 2

1 2 2

2 3 3 3

2 3 3 3 3

Fig. 3. A (3, 4)-tree storing the collection I = {(1, 1, 2, 2), (1, 1, 3, 3), (1, 2, 3, 3)}. The leaves corresponding to
the paths (0, 1, 1, 2, 2), (0, 1, 1, 3, 3), and, respectively, (0, 1, 2, 3, 3) are marked (represented by grey circles);
the root of the respective tree is also marked, as it contains marked leaves.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:27

So, coming back to our matrix, each M[i][j] is initialised as an empty (i, s)-tree, where s = 2p
when there are p ≤ k − 1 active variables at position ℓj in α or s = 2k − 1 when there are exactly k
active variables at position ℓj in α . We just have to explain howM[i][j] is computed efficiently.

Firstly, M[i][1] is obtained in O (n3) as follows. For each integer i , we try all possibilities of

choosing the image of y1 as a factor ofw[|w0 | + 1..i]. Each of them is saved in the corresponding

(i, 2) tree. The leaves and the root are marked accordingly.

Now, we move on to computingM[i][j], assuming that we already computedM[·][j−1]. Basically,
for an i ′ with i ′ ≤ n, looking at M[i ′][j − 1] we retrieve the substitution for the variables that

are active at position ℓj−1. Now, if yj is one of them, we just have to check whether the image of

(yj)
kjw j occurs at position i

′ + 1 (which is done in constant time by LCP-queries). If yes, and there

are k active variables, then the positions storing the image of the last variable in our lists may have

changed; hence, we update the list in O (k) (that is, delete the starting and, unless yj = yj−1, ending
position that denoted the image of yj , and then append to the list the ending position of yj−1 – as

its starting position was already in the list – as well as i ′ as the starting position of (yj)
kjw j , as

explained before). If the list contained less than k variables, we just leave it as it is. In both cases,

the new list is inserted in the treeM[i][j], where i is the ending position of the image of (yj)
kjw j .

We just have to deal with the case when yj was not one of the active variables. In this case,

it is a new variable, that becomes active now. As a first step, we assume that the image of yj is
w[i ′ + 1] and save accordingly the images of the active variables in a tree C[i ′ + 1][j] (these trees
are auxiliary, and are empty beforeM[·][j] are computed); basically, at this step we did not check if

w j can follow the image of yj , nor did we find all possible images for yj , but only those where yj is
mapped to a single letter. After we finish this process for all values of i ′, we continue. Now, for
each index i ′′ < n, considered in increasing order, if C[i ′′][j] is non-empty, then we insert all of its

images into C[i ′′ + 1][j], just saving (if there are less than k active variables at position ℓj) a new
ending position for yj as i

′′ + 1. In this phase, we just represented the cases where yj is mapped

to more than one letter. The process is simple: due to the order in which we consider the indices

i ′′, when computing C[i ′′ + 1][j] we will have in C[i ′′][j] all the possibilities of mapping yj to a

string that ends on position i ′′; then we just extend them with a letter. As said, when we are done

with this, C[i ′′][j] contains all ways of assigning values to the variables active at position ℓj such
that α j−1yj is mapped tow[1..i ′′]. Then, for each i ′′ with i ′′ ≤ n and each list in C[i ′′][j] we check

whether y
kj−1
j w j is a prefix ofw[i ′′..n], and, if yes, insert the list in the treeM[i][j], where i is the

ending position of y
kj−1
j w j . The usage of the trees C[·][j] is justified as they store first images for

the variables y1,y2, . . . ,yj that map only w0Πi=1, j−1 (y
ki
i wi)yj to prefixes of w , then we look for

alignments ofw0Πi=1, j−1 (y
ki
i wi)y

kj
j with prefixes ofw , and finally we store inM the correct images

of the variables that map α j to prefixes ofw .

The total time needed to construct the trees stored in the matrixM is clearly upper bounded by

O (kmn
(
n

k−1

) (
n
k

)
) = O (mn2k

((k−1)!)2).

We conclude that α matchesw if and only ifM[n][m] is not empty. □

5 THE INJECTIVE VARIANT OF THE MATCHING PROBLEM
So far, we presented a series of upper bounds for the time needed to solve Match for various

restricted classes of patterns. In this section, we take a closer look at inj-Match, i. e., the injective

variant of the matching problem for patterns. In particular, we investigate the question whether

our (efficient) algorithms for Match can be adapted to inj-Match. In this regard, we first note the

following result:

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:28 H. Fernau et al.

Proposition 5.1. inj-Match can be solved in time O (mnk−1
(k−1)!), where n is the length of the word,m

the length of the pattern and k its number of distinct variables.

Proof. Our algorithm extends the ideas of [22]. We denote byw our input word of length n and

by α the given pattern.

Let us assume that the variables occurring in α are x1,x2, . . . ,xk such that the first occurrence

of the variable xi in α is to the left of the first occurrence of x j , for every 1 ≤ i < j ≤ k . Let αi
be the prefix of α ending with the first occurrence of xi . In the first phase of our algorithm we

will try all possible lengths for the images of α1,α2, . . . ,αk−1 in an assignment of the variables. As

|αi | < |αi+1 | for all 1 ≤ i ≤ k − 2, we have
(
n

k−1

)
≤ nk−1

(k−1)! possible combinations for these lengths.

Let us now consider such a choice (ℓ1, ℓ2, . . . , ℓk−1), where ℓi is the length of the image of αi ,
for 1 ≤ i ≤ k − 1. It is immediate that we can compute from ℓ1 in O (|α1 |) the actual factor ofw to

which x1 is mapped. Then, knowing the image of x1, we can compute from ℓ2 in O (|α2 |) the actual
factor of w to which x2 is mapped, because α2 contains only the variables x1 and x2, and some

constants. Generally, knowing the images of x1,x2, . . . ,xi−1, we can compute from ℓi in O (|αi |)
the actual factor ofw to which xi is mapped, because αi contains only the variables x1,x2, . . . ,xi−1
occurring multiple time, one occurrence of xi , and some constant factors. Finally, after knowing

the images of x1,x2, . . . ,xk−1 we get in O (m) the image of xk . The total time needed to compute

these images is O (m +
∑

i=1,k−1 |αi |) = O (m).
In the second phase of our algorithm (the injectivity check), we consider separately two cases:

k ≤ 3 and k > 3. In the first case, we can check in O (1) using LCP-data structures whether the

images of the k variables are distinct. In the second case, we can build before the first phase, in a

preprocessing step, a data structure that associates to each factorw[i ..j] ofw the position i ′ of its
first occurrence inw (which may be to the left of i). We also initialise an n × n matrix of A[i ′][ℓ],
initially with all elements 0. Now, after executing the first phase of the computation, described

above, for i from 1 to k we increment the position A[s][ℓ] of the matrix A, where s is the first
occurrence of the factor of w to which xi is mapped, and ℓ is its length. This takes O (m). The
assignment of the variables is injective if and only if all the incremented positions have in the end

value 1. After this, we set exactly those positions that were considered in this phase back to 0 (this

takes O (m) time, again).

Our algorithm is easily checked to be correct. In the case of k ≤ 3 it runs in O (mnk−1
(k−1)!), while for

k > 3 it runs in O (mnk−1
(k−1)! + n

2) = O (mnk−1
(k−1)!), which concludes our proof. □

The question arises whether it is possible to efficiently solve inj-Match for the restricted classes

of patterns (i. e., regular and non-cross patterns as well as patterns with a bounded scope coincidence

degree) for which efficient algorithms for Match exist. In this regard, we can prove the rather

strong negative result that inj-Match is NP-complete for any class of patterns that contains the

trivial class {x1x2 . . . xn | n ≥ 1} of patterns (note that this is the case for the above mentioned

classes).

In the non-injective case, for a fixed pattern α = x1x2 . . . xn , the set of words matching α has

a trivial structure, since it is the set of all words of length at least n. For the injective variant, on
the other hand, this set contains exactly the words that have a unique factorisation with n factors;

thus, solving the injective matching problem for such trivial patterns is equivalent to the following

decision problem:

Uniqe Factorisation (UF)

Instance: A wordw and an integer k with 1 ≤ k ≤ |w |.
Question: Does there exist a unique factorisation ofw with size of at least k?

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:29

The problem of computing unique factorisations (also called equality-free factorisations) has

been investigated in the literature in different contexts. In Condon et al. [8, 9], the problem of

computing unique factorisations with factors of bounded length has been investigated, which is

motivated by self-assembly of DNA sequences, while the paper [38] provides a more general (and

also parameterised) complexity analysis. The hardness of computing a unique factorisation with

only palindromes as factors is shown by Banai et al. [4].

We shall now prove that the problem UF is in fact NP-complete, which directly yields the above

mentioned hardness results for the matching problem. We establish the NP-hardness of UF by a

reduction from the following well-known problem:

3-Dimensional Matching (3D-Match)

Instance: An integer ℓ ≥ 1 and a set S ⊆ {(p,q, r) | 1 ≤ p ≤ ℓ < q ≤ 2ℓ < r ≤ 3ℓ}.
Question: Does there exist S ′ ⊆ S with |S ′ | = ℓ such that, for all (p,q, r), (p ′,q′, r ′) ∈ S ′, (p,q, r) ,
(p ′,q′, r ′) implies p , p ′, q , q′ and r , r ′?

An instance of 3D-Match is a set S of triples, the three components of which carry values from

{1, 2, . . . , ℓ}, {ℓ + 1, ℓ + 2, . . . , 2ℓ} and {2ℓ + 1, 2ℓ + 2, . . . , 3ℓ}, respectively. A solution for (S, ℓ) is
a selection of ℓ triples such that no two of them coincide in any component. Hence, for every

i ∈ {1, 2, 3}, if we collect all the ith components of the ℓ triples of a solution, then we get exactly

the set {(i − 1)ℓ + 1, (i − 1)ℓ + 2, . . . , iℓ}. For the NP-completeness of 3D-Match see [20].

We define a mapping д from 3D-Match to UF. Let (S, ℓ) be an instance of 3D-Match, where

ℓ ≥ 1 and S = {s1, s2, . . . , sk } with si = (pi ,qi , ri), for 1 ≤ i ≤ k . The input word д(S, ℓ) for UF shall
be a word over the alphabet

Σ = {a, ¢i , $i , bi, j ,%i, j , l , #l , #0 | 1 ≤ i ≤ k, 1 ≤ j ≤ 4, 1 ≤ l ≤ 3ℓ} ,

and is defined as follows. Let v = v1v2 · · ·vk , where, for every integer i with 1 ≤ i ≤ k ,

vi = ¢i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a $i .

Let û = 1 #1 · · · #3ℓ−2 (3ℓ − 1) #3ℓ−1 (3ℓ) #3ℓ and u = u1u2 · · ·uk , where, for every integer i with
1 ≤ i ≤ k ,

ui = bi,1 %i,1 bi,2 %i,2 bi,3 %i,3 bi,4 %i,4 .

Finally,u = a #0 û u,w = uv , ℓ̂ = 7ℓ+6(k−ℓ)+ |u | and д(S, ℓ) = (w, ℓ̂). This concludes the definition

of the mapping д. In the following, let (S, ℓ) be a fixed instance of 3D-Match and (w, ℓ̂) = д(S, ℓ).
We now explain the mapping д in an intuitive way. The actual information of the 3D-Match

instance is exclusively encoded in the suffixv ofw , whereas the purpose of the prefix u is to enforce

a certain structure of unique factorisations (note that u is just a list that contains each symbol

from Σ \ {¢i , $i , | 1 ≤ i ≤ k } exactly once). Every l with 1 ≤ l ≤ 3ℓ, i. e., the elements of the

triples, is used as an individual symbol; thus, every triple si = (pi ,qi , ri) of S can be represented

by vi = ¢i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a $i , where the factors pia, qia and ria represent the single

components. Each of the remaining symbols ¢i , $i , bi, j , for 1 ≤ j ≤ 4, has exactly one occurrence

inw ; thus, every factor that contains one of these will necessarily be distinct. Hence, the factors

pia, qia and ria are the only ones that may coincide in vi and some vj , for i , j, and this is only

the case if the triples si and sj contain common elements.

We now define two special factorisations of the factors vi , where 1 ≤ i ≤ k . The factorisation
¢ipi | abi,1 | bi,2qi | abi,3 | bi,4ri | a$i is called safe and the factorisation ¢i | pia | bi,1bi,2 | qia |
bi,3bi,4 | ria | $i is called unsafe. The safe factorisation contains only distinct factors, whereas

the factors pia, qia and ria of the unsafe factorisation may also occur in the unsafe factorisation

of some vj , where 1 ≤ j ≤ k and i , j; thus, the situation that si and sj have common elements

translates into the situation that the unsafe factorisations of vi and vj have common factors.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:30 H. Fernau et al.

If {st1 , st2 , . . . , stℓ } is a solution of (S, ℓ), then we can factorise all vti , for 1 ≤ i ≤ ℓ, into the

unsafe factorisation, all other vj , where j < {t1, t2, . . . , tℓ }, into the safe factorisation, and the prefix

u into |u | individual factors. This yields a factorisation ofw with |u | + 7ℓ + 6(k − ℓ) = ℓ̂ factors and
its uniqueness follows from the fact that {st1 , st2 , . . . , stℓ } is a solution of (S, ℓ) and that the symbols

from u do not occur as single factors in v .

Lemma 5.2. If (S, ℓ) has a solution, then there is a unique factorisation ofw of size at least ℓ̂.

Proof. We assume that {st1 , st2 , . . . , stℓ } is a solution of (S, ℓ). We define a factorisation f ofw in

the following way. Every single symbol of u is an f -factor and, for every integer i , with 1 ≤ i ≤ k
and i ∈ {t1, t2, . . . , tℓ }, we factorise vi into the unsafe factorisation

¢i pia bi,1bi,2 qia bi,3bi,4 ria $i ,

and, for every integer i , with 1 ≤ i ≤ k and i < {t1, t2, . . . , tℓ }, we factorise vi into the safe

factorisation

¢ipi abi,1 bi,2qi abi,3 bi,4ri a$i .

The factorisation f has exactly |u | + 7ℓ + 6(k − ℓ) = ℓ̂ factors and it only remains to show that it is

unique.

In u, every symbol has exactly one occurrence, which means that if one of the factors f (i), where
1 ≤ i ≤ |u |, is repeated, then it must occur as a factor of v . However, the only f -factors of v of

length 1 are the factors ci and $i , for every i ∈ {t1, t2, . . . , tℓ }, which do not occur in u. Hence,
all f -factors of length 1 are distinct factors. Furthermore, the f -factors bi,1bi,2 and bi,3bi,4, for
every i ∈ {t1, t2, . . . , tℓ }, as well as the f -factors ¢ipi , abi,1, bi,2qi , abi,3, bi,4ri and a$i , for every
i < {t1, t2, . . . , tℓ }, all contain a symbol from {¢i , $i , bi,1, bi,2, bi,3, bi,4} and therefore are distinct

factors. The only remaining f -factors are pia, qia and ria, for every i ∈ {t1, t2, . . . , tℓ }. If there
exists an integer i ∈ {t1, t2, . . . , tℓ }, such that pia is a repeated f -factor, then there must exist an

integer i ′ ∈ {t1, t2, . . . , tℓ } with i , i
′
and pia = pi′a (note that pia = qi′a or pia = ri′a is impossible,

since 1 ≤ pi ≤ ℓ, ℓ + 1 ≤ qi′ ≤ 2ℓ and 2ℓ + 1 ≤ ri′ ≤ 3ℓ), which means pi = pi′ . This implies that

si and si′ coincide in a component, which is a contradiction to the fact that {st1 , st2 , . . . , stℓ } is a
solution of (S, ℓ). Hence, all f -factors pia, with i ∈ {t1, t2, . . . , tℓ }, are distinct factors and in exactly

the same way we can show that all f -factors qti a and rti a, where 1 ≤ i ≤ ℓ, are distinct factors, as
well. Therefore the factorisation f defined above is unique, which concludes the proof. □

Proving the converse of Lemma 5.2 is more difficult and here the prefix u ofw will be crucial.

The idea is to first show that if there exists a unique factorisation of w of size ℓ̂, then there also

exists one with at least the same size such that

(1) no factor overlaps
2
the boundaries between u and v , or between some vi and vi+1, where

1 ≤ i ≤ k − 1, and
(2) u is split into |u | factors.

Property (1) can be achieved by simply splitting the factors that may overlap the critical positions;

this does only increase the number of factors and the uniqueness of the factorisations is guaranteed

by the fact that the new factors must contain symbols with only one occurrence inw .

Lemma 5.3. Ifw has a unique factorisation f of size at least ℓ̂, then, for some ℓ̂′ with ℓ̂′ ≥ ℓ̂, there

exists a unique factorisation f ′ of w of size at least ℓ̂′, such that no f ′-factor overlaps positions |u |
and |u | + 1 or positions |uv1v2 · · ·vi | and |uv1v2 · · ·vi | + 1, where 1 ≤ i ≤ k − 1.
2
A factor f (i), where 1 ≤ i ≤ k , overlaps positions j and j + 1, where 1 ≤ j ≤ |w | − 1, if both of these positions belong to

the factor f (i), i. e., |f (1)f (2) · · · f (i − 1) | < j < |f (1)f (2) · · · f (i − 1)f (i) |.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:31

Proof. Let f be a unique factorisation of w . If, for some p, where 1 ≤ p ≤ ℓ̂, the factor f (p)
overlaps positions |u | and |u | + 1, then f (p) = π1 %k,4 ¢

1
π2 for some (possibly empty) factors π1 and

π2. We can now transform f into a factorisation f ′ by splitting the factor f (p) = π1 %k,4 ¢
1
π2 into

the factors π1 %k,4 and ¢
1
π2, respectively. Since the symbols %k,4 and ¢

1
have only one occurrence

in w , we can conclude that f ′ is a unique factorisation of size (ℓ̂ + 1). Since every vi starts with
¢i and ends with $i , we can apply exactly the same construction in order to resolve all possible

overlaps of positions |uv1v2 · · ·vi | and |uv1v2 · · ·vi | + 1, for every i such that 1 ≤ i ≤ k − 1. These

constructions do not decrease the number of factors; thus, the statement of the lemma follows. □

Property (2) requires a more careful argument. If u is not split into |u | factors, then in u there

exists a factor π of size at least 2. If we simply cut off the first symbol of π , then we can only

increase the number of factors, but it may happen that one of the new factors is now repeated,

destroying the uniqueness of the factorisation. However, it turns out that at most one of these two

factors can be repeated, and if one of these factors is repeated, then it has size 1 and must have a

second occurrence in v . We can then show that this repeated factor necessarily has a neighbouring

factor in v to which it can be joined without violating the distinctness of this factor.

Lemma 5.4. Ifw has a unique factorisation f of size at least ℓ̂, then, for some ℓ̂′ with ℓ̂′ ≥ ℓ̂,w has

a unique factorisation f ′ of size at least ℓ̂′, such that every single symbol of u is an f ′-factor.

Proof. First, by applying Lemma 5.3, we transform f into a unique factorisation f ′′ of size ℓ
that satisfies the properties stated in Lemma 5.3. If f ′′ splits u into |u | factors of size 1, then we

are done. So we assume that this is not the case and we show how f ′′ can be transformed into a

unique factorisation f ′, such that every single symbol of u is an f ′-factor.
Since f ′′ does not splitu into |u | factors (and since no f ′′-factor overlaps positions |u | and |u |+1),

there exists an integer p, where 1 ≤ p ≤ |u | −1, such that | f ′′(p) | ≥ 2 and | f ′′(1) f ′′(2) · · · f ′′(p) | ≤
|u |. We define f ′′(p) = xπ , where x is a single symbol and π is some non-empty factor. We shall

first consider the case when |π | ≥ 2 (i. e., | f ′′(p) | > 2).

We modify f ′′ by splitting the factor f ′′(p) into the two factors x and π , which increases the

number of total factors by 1. It is not possible that the factor π is repeated (with respect to this

modified factorisation), since |π | ≥ 2 and every factor of u of length at least 2 contains a symbol

#i , for 0 ≤ i ≤ 3ℓ + 1, or %i, j , for 1 ≤ i ≤ k and 1 ≤ j ≤ 4, which have only a single occurrence in

w . It is possible, however, that the factor x is repeated, i. e., there is an occurrence of x in some vi ,
for 1 ≤ i ≤ k , which is an f ′′-factor (note that x is not repeated in u). This particularly implies

that x ∈ {a,pi ,qi , ri , bi,1, bi,2, bi,3, bi,4}. We note that, by the structure of vi , there is a symbol

y ∈ {bi,1, bi,2, bi,3, bi,4, ¢i , $i }, such that the factor x is the left neighbour of an f ′′-factor yδ or the

right neighbour of an f ′′-factor δy. Since these two cases can be dealt with analogously, we only

consider the case that x is the left neighbour of a factor yδ . We now modify the factorisation by

appending x to the factor yδ and we claim that the new factor xyδ is unique (with respect to the

modified factorisation). This is obvious if y ∈ {¢i , $i }, since these symbols have only one occurrence

in w . If y < {¢i , $i }, then y ∈ {bi,1, bi,2, bi,3, bi,4} and, since y has only one occurrence in v , this
implies that if xyδ is repeated, then it is repeated only in u. This is a contradiction, since |xyδ | ≥ 2

and every factor of u of size at least 2 contains a symbol #i , for 0 ≤ i ≤ 3ℓ + 1, or %i, j , for 1 ≤ i ≤ k
and 1 ≤ j ≤ 4. Consequently, xyδ is a distinct factor and the modified factorisation has exactly the

same number of factors as f ′′.
Next, we consider the case when |π | = 1 (i. e., | f ′′(p) | = 2). Again, we split the factor f ′′(p) into

two factors x and π , which increases the number of total factors by 1. Furthermore, since either x
or π is a symbol #i , for 0 ≤ i ≤ 3ℓ + 1, or %i, j , for 1 ≤ i ≤ k and 1 ≤ j ≤ 4, we can conclude that at

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:32 H. Fernau et al.

most one of the two factors x and π can be repeated. Hence, we can join this repeated factor with a

neighbour as before, which results again in a unique factorisation with the same number of factors.

By repeating the construction described above, we can change the factorisation f ′′ into the

unique factorisation f ′ of size ℓ̂′ with ℓ̂′ ≥ ℓ ≥ ℓ̂, such that every single symbol of u is an

f ′-factor. □

Now the structure of the factorisation ensured by Lemmas 5.3 and 5.4 allows us to argue that

the only factors of size 1 in v are of the form ¢i or $i , since otherwise they would be repeated in

u. Consequently, every vi is split in at most 7 factors and if so, the factorisation of vi must be the

unsafe factorisation. In order to get at least ℓ̂ factors, at least ℓ of the vi must be factorised into the

unsafe factorisation, which corresponds to a solution of the 3D-Match instance.

Lemma 5.5. If there exists a unique factorisation ofw of size at least ℓ̂, then (S, ℓ) has a solution.

Proof. Let f be a unique factorisation of w of size ℓ̂. By Lemmas 5.3 and 5.4, there exists a

unique factorisation f ′ ofw of size ℓ̂′, for some ℓ̂′ ≥ ℓ̂, such that no f ′-factor overlaps positions |u |
and |u | + 1, or positions |uv1v2 · · ·vi | and |uv1v2 · · ·vi | + 1, where 1 ≤ i ≤ k − 1, and every single

symbol of u is an f ′-factor.
If a single symbol x of some vi , where 1 ≤ i ≤ k , is an f ′-factor, then x ∈ {¢i , $i }. This is due

to the fact that if x < {¢i , $i }, then x has an occurrence in u and since every single symbol of u is

an f ′-factor, this means that x is a repeated f ′-factor. This directly implies that, for every i with
1 ≤ i ≤ k , it is not possible that f ′ splits vi in more than 7 factors and, furthermore, if f ′ splits vi
in 7 factors, then this is done in the following way:

¢i pia bi,1bi,2 qia bi,3bi,4 ria $i .

We assume that f ′ splits exactlym of thevi , where 1 ≤ i ≤ k , into 7 factors and the remaining k−m
of the vi , where 1 ≤ i ≤ k , into 6 or less factors. Hence, f ′ splitsw into at most |u | + 7m + 6(k −m)
factors. Ifm < ℓ, then

|u | + 7m + 6(k −m) < |u | + 7ℓ + 6(k − ℓ) = ℓ̂ ,

which is a contradiction, since f ′ is a factorisation of size ℓ̂′ and ℓ̂′ ≥ ℓ̂. Thus, ℓ ≤ m. Now let

t1, t2, . . . , tm with 1 ≤ ti ≤ k for 1 ≤ i ≤ m, be such that f ′ splits every vti with 1 ≤ i ≤ m in

7 factors. As explained above, this implies that pti a, qti a and rti a are f ′-factors, for every i with
1 ≤ i ≤ m. Consequently, for every i and j, where 1 ≤ i < j ≤ m, we have pti a , ptj a, qti a , qtj a
and rti a , rtj a, which means that (st1 , st2 , . . . , stℓ) is a solution for (S, ℓ). □

In order to conclude the NP-completeness of UF, it only remains to observe that the problem is

clearly in NP (we can check the uniqueness of a guessed factorisation in polynomial time) and that

the reduction defined above can be carried out in polynomial-time.

Theorem 5.6. UF is NP-complete.

Since a wordw matches the pattern x1x2 . . . xn if and only ifw has a unique factorisation of size

exactly n, but (w,n) ∈ UF if and only ifw has a unique factorisation of size at least n, it is important

to note that if a word has a unique factorisation of size k , then it also has a unique factorisation of

size k ′, for all k ′ with 1 ≤ k ′ ≤ k . This is due to the fact that the uniqueness of a factorisation is

preserved if we join a longest factor with one of its neighbours. Together with Theorem 5.6, this

implies the following negative result with respect to the injective variant of the matching problem

for patterns.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:33

Corollary 5.7. inj-Match is NP-complete for Patreg, Patnc, Patrvar≤k , and Patscd≤k , for every k
with k ≥ 1.

A downside of our reduction to prove Theorem 5.6 is that it requires an unbounded alphabet

and it is open whether UF is NP-complete for fixed alphabets.
3
Consequently, it is not implied

that the injective matching problem for the classes of patterns mentioned in Corollary 5.7 is still

NP-complete if the alphabet is fixed. However, for fixed alphabets of size 5, we can at least show

that the injective matching problem remains NP-complete for the class of non-cross patterns and

hence for patterns with a bounded scope coincidence degree.

To this end, we again devise a reduction д from 3D-Match, but now directly to inj-Match. In

order to define д, let (S, ℓ) be an instance of 3D-Match, where ℓ ≥ 1 and S = {s1, s2, . . . , sk } with
si = (pi ,qi , ri), for 1 ≤ i ≤ k . Next, we define a word w over the alphabet Σ = {a, b, $, ¢, #} and a

pattern α which uses the variables xi, j , for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ 3, and yi , zj , for 1 ≤ i ≤ ℓ + 1 and
1 ≤ j ≤ 2ℓ + 2. We first define the factors

βi = x2i,1x
2

i,2x
2

i,3, 1 ≤ i ≤ ℓ ,

ui = (api b)2 (aqi b)2 (ari b)2, 1 ≤ i ≤ k ,

#i = (#¢1#¢2# · · · #¢i#)m , 1 ≤ i ≤ 2k + 2 ,

wherem = max{2k + 1, 3ℓ} + 1. Then, in order to form α andw , these factors are combined in the

following way:

α = zm
1
y1 z

m
2
β1 z

m
3
y2 z

m
4
β2 z

m
5
y3 z

m
6
β3 · · · βℓ z

m
2ℓ+1 yℓ+1 z

m
2ℓ+2 ,

w = #1 $
1
#2 u1 #3 $

3
#4 u2 #5 $

5
#6 u3 · · ·uk #2k+1 $

2k+1
#2k+2 .

Finally, we set д(S, ℓ) = (α ,w) and, in the following, let (S, ℓ) be a fixed instance of 3D-Match and

(α ,w) = д(S, ℓ).
Let us give an intuitive explanation of this reduction. The triples (pi ,qi , ri) of S are encoded

as strings ui = (api b)2 (aqi b)2 (ari b)2, i. e., the integer components are now encoded in unary and

every component is represented as a square. Since the factors βi of α are necessarily mapped to

factors ofw that are three consecutive squares, any substitution mapping α tow maps every βi to
some uj ; thus, selecting ℓ many of the uj (the single occurrence variables yi make sure that any uj
can be selected). If the substitution is injective, then the selected uj must correspond to a solution

for the 3D-Match instance and the factors #i and $
j
ensure that if the 3D-Match instance has a

solution, then also a substitution can select the corresponding uj fromw in an injective way.

We now first prove that any substitution mapping α tow can be interpreted as selecting ℓ many

of the factors ui .

Lemma 5.8. If h(α) = w for some substitution h, then there exist t1, t2, . . . , tℓ with 1 ≤ t1 < t2 <
. . . < tℓ ≤ k , such that, for every i with 1 ≤ i ≤ ℓ, h(βi) = uti .

Proof. We assume that h(α) = w , where h is a substitution. Let j , where 1 ≤ j ≤ ℓ, be arbitrarily
chosen. We recall thatm = max{2k + 1, 3ℓ} + 1, which implies that the only factors of the form

νm inw are exactly the factors #i , where 1 ≤ i ≤ 2k + 2. Hence, h(zm
2j) = #r and h(z

m
2j+1) = #r ′ , for

some r and r ′ with 1 ≤ r < r ′ < 2k + 2. This implies that

h(zm
2j βj z

m
2j+1) = #r πr #(r+1) π(r+1) #(r+2) · · · #(r ′−1) π(r ′−1) #r ′ ,

3
As shown in [9], the variant where we require the factorisation to have short factors instead of a large size is NP-complete

also for fixed alphabets.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:34 H. Fernau et al.

where, for every i with r ≤ i ≤ r ′ − 1, the factor πi is either u i
2

or $
i
. Furthermore, since βj =

x2j,1x
2

j,2x
2

j,3, we have that h(βj) is the concatenation of 3 squares, i. e.,

h(βj) = πr #(r+1) π(r+1) #(r+2) · · · #(r ′−1) π(r ′−1) = v1v1v2v2v3v3 .

We first consider the case where r + 1 < r ′. Since the factors #i , for every i with r + 1 ≤ i ≤ r ′ − 1,

are not repeated inw , we can conclude that these factors cannot be completely contained in one of

the roots v1, v2 or v3. We now assume that πr = $
r
. Since πr is not of even length, we can conclude

that there is an integer i with 1 ≤ i ≤ 3 such that vi starts in πr , but does not end in πr , i. e., it
overlaps the boundary between the factors πr and #(r+1) . Furthermore, as explained above, #(r+1)

cannot be contained in vi ; thus, vi = v
′
iv
′′
i , where v

′
i is a suffix of πr and v

′′
i is a prefix of #(r+1) .

This implies that in h(βj) there occurs a factor v
′
iv
′′
i v
′
iv
′′
i with v ′i ∈ {$}

+
and v ′′i ∈ {#, ¢}

+
, which

is a contradiction, since such a factor does not occur inw . If, on the other hand, πr = u r
2

, then it

follows from the fact that u r
2

is neither a square nor the concatenation of two squares, that there

must exist an integer i with 1 ≤ i ≤ 3 such that vi overlaps the boundary between the factors

πr and #(r+1) , which implies that in h(βj) there occurs a factor v
′
iv
′′
i v
′
iv
′′
i with v ′i ∈ {a, b}

+
and

v ′′i ∈ {#, ¢}
+
, which again is a contradiction.

Consequently, r + 1 = r ′, which implies that h(βj) = πr and since |$r | is odd and |h(βj) | is even,
we can conclude that πr = u r

2

. Hence, there must exist t1, t2, · · · , tℓ with 1 ≤ t1 < t2 < . . . < tℓ ≤ k ,
such that, for every integer i with 1 ≤ i ≤ ℓ, h(βi) = uti , which concludes the proof. □

We are now ready to prove that д is a reduction from 3D-Match to the injective matching

problem for non-cross patterns.

Lemma 5.9. Let (S, ℓ) be an instance of 3D-Match and let (α ,w) = д(S, ℓ). Then (S, ℓ) has a
solution if and only if there exists an injective substitution h with h(α) = w .

Proof. In this proof, we shall use the following notation. For any substitution h, any pattern α
and any set V of variables that occur in α , we say that h is injective with respect to V if, for every

x ,y ∈ V , x , y implies h(x) , h(y). Obviously, h is injective if and only if it is injective with respect

to the set of all variables that occur in α .
We start with the only if direction and assume that {st1 , st2 , . . . , stℓ } is a solution for (S, ℓ). We

define an injective substitution h in the following way. For every i with 1 ≤ i ≤ ℓ, we define

h(xi,1) = apti b, h(xi,2) = aqti b and h(xi,3) = arti b. Thus, for every i with 1 ≤ i ≤ ℓ, h(βi) = uti
and, since {st1 , st2 , . . . , stℓ } is a solution, h is injective with respect to {xi, j | 1 ≤ i ≤ ℓ, 1 ≤ j ≤ 3}.

We extend h in such a way that h(z1) = #¢1#, h(zm
2l+2) = #¢1#¢2# · · · #¢2k+2# and, for every i

with 1 ≤ i ≤ ℓ + 1, we have h(zm
2i) = #¢1#¢2# · · · #¢2ti # and h(zm

2i+1) = #¢1#¢2# · · · #¢2ti+1#. This
particularly implies that h(zm

1
) = #1, h(z

m
2l+2) = #2k+2 and, for every i with 1 ≤ i ≤ ℓ + 1, we have

h(zm
2i) = #2ti and h(z

m
2i+1) = #2ti+1. Furthermore, since the words #¢1#¢2# · · · #¢i#, 1 ≤ i ≤ 2k + 2,

are pairwise different, h is injective with respect to {zi | 1 ≤ i ≤ 2ℓ + 2}. Finally, we extend h
in such a way that the single occurrence variables yi , for 1 ≤ i ≤ ℓ + 1, are mapped to the parts

between the h(zm
2i βiz

m
2i+1) = #2tiuti #2ti+1 factors, i. e.,

h(y1) = $
1
#2 u1 #3 · · · #2(t1−1) ut1−1 #2t1−1 $

2t1−1 ,

h(yℓ+1) = $
2tℓ+1

#2(tℓ+1) utℓ+1 #2tℓ+3 · · · #2k uk #2k+1 $
2k+1 ,

and, for every i with 2 ≤ i ≤ ℓ,

h(yi) = $
2ti+1

#2ti+2 uti+1 #2ti+3 · · ·uti+1−1 #2(ti+1−1)+1 $
2(ti+1−1)+1 .

Since all of these words h(yi), for 1 ≤ i ≤ ℓ + 1, contain at least one of the factors $
2j−1

, where

1 ≤ j ≤ k + 1, we can conclude that they are pairwise different and, thus, h is injective with respect

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:35

to {yi | 1 ≤ i ≤ ℓ + 1}. Moreover, h(α) = w holds and, since all variables xi, j , with 1 ≤ i ≤ ℓ and
1 ≤ j ≤ 3, are mapped to words over {a, b}, all variables zi , with 1 ≤ i ≤ 2ℓ + 2, are mapped to

words over {#, ¢} and all variables yi , with 1 ≤ i ≤ ℓ + 1, are mapped to words that contain at least

one occurrence of $, we can conclude that h is injective with respect to all variables that occur in α .
This concludes the proof of the only if direction.

In order to prove the if direction, we assume that h(α) = w for some injective substitution h.
By Lemma 5.8, we can conclude that there exist t1, t2, · · · , tℓ with 1 ≤ t1 < t2 < . . . < tℓ ≤ k , such
that, for every i with 1 ≤ i ≤ ℓ, h(βi) = uti . This directly implies that, for every i with 1 ≤ i ≤ ℓ,
we get h(xi,1) = apti b, h(xi,2) = aqti b and h(xi,3) = arti b. From the fact that h is injective, we can

now easily conclude that {st1 , st2 , . . . , stℓ } is a solution for (S, ℓ). More precisely, if, for some i and
i ′ with 1 ≤ i < i ′ ≤ ℓ, we have pti = pti′ , qti = qti′ or rti = rti′ , then this implies h(xi,1) = h(xi′,1),
h(xi,2) = h(xi′,2) or h(xi,3) = h(xi′,3), respectively, which contradicts the injectivity of h. □

Since the mapping д can be computed in polynomial time, we conclude the following.

Theorem 5.10. inj-Match is NP-complete for Patnc and Patscd≤k , for every k with k ≥ 1, even for

a constant alphabet of size at least 5.

6 CONCLUSIONS AND OPEN PROBLEMS
For some of the classes of patterns with variables for which it is known that the matching problem

can be solved in polynomial-time, we have presented efficient algorithms. The algorithms for

patterns with a bounded number of repeated variables and for patterns with a bounded scope

coincidence degree have an exponential dependency on these parameters, which, suggested by the

W [1]-hardness of the respective parameterised problems, can probably not be avoided. However,

for rather small bounds on the parameters, i. e., for patterns with only one repeated variable and

patterns with a scope coincidence degree of one (i. e., non-cross patterns), our algorithms achieve

rather efficient running-times and require novel and sophisticated word combinatorial insights. As

mentioned in the introduction, these algorithms can also be used in order to efficiently compute

descriptive patterns of finite sets of words.

This algorithmic part is complemented by showing that it is very unlikely that comparitively

efficient algorithms (or any polynomial-time algorithms) exist for the injective variant of the

matching problem, where different variables must be replaced by different strings. More precisely,

the injective variant of the matching problem is NP-complete even for regular patterns (and, as

an immediate consequence, also for patterns with a bounded number of repeated variables or a

bounded scope coincidence degree (including non-cross patterns)). However, as a caveat, we stress

that we were only able to show this result with respect to unbounded alphabets. For the case of

constant alphabets (of size at least 5), we obtained the slightly weaker result that the injective

variant of the matching problem is NP-complete even for non-cross patterns (so also for patterns

with a bounded scope coincidence degree). It is an open problem whether the injective variant of

the matching problem for regular patterns (or some other class of patterns with a bounded number

of repeated variables) can be efficiently solved for fixed alphabets.

As further research, it might be worthwhile to find efficient algorithms for other classes of

patterns for which polynomial-time matching is generally possible (note that the meta-theorem

of [36] is a powerful tool for identifying such pattern classes). Another extension of our results is

the erasing matching problem, where variables can also be substituted by the empty word. On the

one hand, our efficient algorithms can be extended canonically to the erasing matching problem

as well, without any change in the complexity. On the other hand, it is unclear whether also in

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:36 H. Fernau et al.

the erasing case the requirement for injectivity
4
makes the matching problem harder (in the sense

demonstrated in Section 5). More precisely, the erasing matching problem can also be solved in

polynomial-time for regular patterns, non-cross patterns etc., but Theorem 5.6 does not imply

that requiring injectivity makes the matching problem hard; in fact, while computing a unique

factorisation of size at least n for a wordw is equivalent to solving the injective matching problem

forw and pattern x1x2 . . . xn , the latter task becomes trivial, if variables can be erased.

Since patterns with variables have their origin in learning theory and formal languages, it might

be worthwhile to extend the concept of injectivity accordingly. More precisely, to a given pattern α
with terminal alphabet Σ, we can associate its pattern language L(α), which is the set of all words

over Σ that match α . While the learnability as well as language theoretical properties of these

pattern languages are well-investigated, injective pattern languages, i. e., the set of all words that

match the pattern in an injective way, are, to the best of our knowledge, never considered so far.

7 ACKNOWLEDGEMENTS
The work of Florin Manea was funded by the DFG grant MA 5725/1-2 (project number 218587403).

We thank the anonymous reviewers for their valuable feedback, which improved the exposition

of the paper.

REFERENCES
[1] Amihood Amir and Igor Nor. 2007. Generalized function matching. Journal of Discrete Algorithms 5 (2007), 514–523.

Issue 3.

[2] Dana Angluin. 1980. Finding patterns common to a set of strings. J. Comput. System Sci. 21 (1980), 46–62.

[3] Brenda S. Baker. 1996. Parameterized Pattern Matching: Algorithms and Applications. J. Comput. System Sci. 52 (1996),

28–42.

[4] Hideo Bannai, Travis Gagie, Shunsuke Inenaga, Juha Kärkkäinen, Dominik Kempa, Marcin Piatkowski, and Shiho

Sugimoto. 2018. Diverse Palindromic Factorization is NP-Complete. International Journal of Foundations of Computer

Science 29, 2 (2018), 143–164.

[5] Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. 2012. Expressive Languages for Path Queries over

Graph-Structured Data. ACM Transactions on Database Systems 37 (2012).

[6] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. 2003. A formal study of practical regular expressions. International

Journal of Foundations of Computer Science 14 (2003), 1007–1018.

[7] Raphaël Clifford, Aram Wettroth Harrow, Alexandru Popa, and Benjamin Sach. 2009. Generalised Matching. In

Proceedings of the 16th International Symposium on String Processing and Information Retrieval, SPIRE 2009, Saariselkä,

Finland, August 25-27, 2009. 295–301.

[8] Anne Condon, Ján Manuch, and Chris Thachuk. 2008. Complexity of a Collision-Aware String Partition Problem and

Its Relation to Oligo Design for Gene Synthesis. In Computing and Combinatorics, 14th Annual International Conference,

COCOON 2008, Dalian, China, June 27-29, 2008, Proceedings. 265–275.

[9] Anne Condon, Ján Manuch, and Chris Thachuk. 2015. The complexity of string partitioning. Journal of Discrete

Algorithms 32 (2015), 24–43.

[10] Maxime Crochemore. 1981. An Optimal Algorithm for Computing the Repetitions in a Word. Inform. Process. Lett. 12,

5 (1981), 244–250.

[11] Maxime Crochemore and Wojciech Rytter. 1991. Usefulness of the Karp-Miller-Rosenberg Algorithm in Parallel

Computations on Strings and Arrays. Theoretical Computer Science 88, 1 (1991), 59–82.

[12] Maxime Crochemore and Wojciech Rytter. 1995. Squares, Cubes, and Time-Space Efficient String Searching. Algorith-

mica 13, 5 (1995), 405–425.

[13] Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and Thomas Zeugmann. 2001. Learning one-

variable pattern languages very efficiently on average, in parallel, and by asking queries. Theoretical Computer Science

261 (2001), 119–156.

[14] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. 2015. Pattern Matching with Variables: Fast

Algorithms and New Hardness Results. In 32nd International Symposium on Theoretical Aspects of Computer Science,

STACS 2015, March 4-7, 2015, Garching, Germany. 302–315.

4
Injectivity means, in the erasing case, that only variables that are not erased must be substituted by different strings.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Pattern Matching with Variables 39:37

[15] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. 2018. Revisiting Shinohara’s algorithm for

computing descriptive patterns. Theoretical Computer Science 733 (2018), 44–54.

[16] Henning Fernau and Markus L. Schmid. 2015. Pattern matching with variables: A multivariate complexity analysis.

Information and Computation 242 (2015), 287–305.

[17] Henning Fernau, Markus L. Schmid, and Yngve Villanger. 2015. On the Parameterised Complexity of String Morphism

Problems. Theory of Computing Systems (2015).

[18] Dominik D. Freydenberger. 2013. Extended Regular Expressions: Succinctness and Decidability. Theory of Computing

Systems 53 (2013), 159–193.

[19] Jeffrey E. F. Friedl. 2006. Mastering Regular Expressions (third ed.). O’Reilly, Sebastopol, CA.

[20] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman & Co., New York, NY, USA.

[21] Dan Gusfield. 1997. Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge

University Press, New York, NY, USA.

[22] Oscar H. Ibarra, Ting-Chuen Pong, and StephenM. Sohn. 1995. A note on parsing pattern languages. Pattern Recognition

Letters 16 (1995), 179–182.

[23] Juhani Karhumäki, Wojciech Plandowski, and Filippo Mignosi. 2000. The Expressibility of Languages and Relations by

Word Equations. J. ACM 47 (2000), 483–505.

[24] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. 2006. Linear work suffix array construction. J. ACM 53 (2006),

918–936. Issue 6.

[25] Michael J. Kearns and Leonard Pitt. 1989. A Polynomial-Time Algorithm for Learning k-Variable Pattern Languages

from Examples. In Proceedings of the Second Annual Workshop on Computational Learning Theory, COLT 1989, Santa

Cruz, CA, USA, July 31 - August 2, 1989. 57–71.

[26] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. 2012. Efficient Data Structures for the

Factor Periodicity Problem. In Proceedings of the 19th International Symposium on String Processing and Information

Retrieval, SPIRE 2012, Cartagena de Indias, Colombia, October 21-25, 2012. 284–294.

[27] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. 2015. Internal Pattern Matching Queries

in a Text and Applications. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2015, San Diego, CA, USA, January 4-6, 2015. 532–551.

[28] Dmitry Kosolobov, Florin Manea, and Dirk Nowotka. 2017. Detecting One-Variable Patterns. In Proceedings of the 24th

International Symposium on String Processing and Information Retrieval, SPIRE 2017, Palermo, Italy, September 26-29,

2017. 254–270.

[29] M. Lothaire. 1997. Combinatorics on Words. Cambridge University Press.

[30] M. Lothaire. 2002. Algebraic Combinatorics on Words. Cambridge University Press, Cambridge, New York, Chapter 3.

[31] Alexandru Mateescu and Arto Salomaa. 1994. Finite Degrees of Ambiguity in Pattern Languages. RAIRO Informatique

Théoretique et Applications 28 (1994), 233–253.

[32] Yen K. Ng and Takeshi Shinohara. 2008. Developments from enquiries into the learnability of the pattern languages

from positive data. Theoretical Computer Science 397 (2008), 150–165.

[33] Sebastian Ordyniak and Alexandru Popa. 2016. A Parameterized Study of Maximum Generalized Pattern Matching

Problems. Algorithmica 75 (2016), 1–26.

[34] Daniel Reidenbach. 2008. Discontinuities in pattern inference. Theoretical Computer Science 397 (2008), 166–193.

[35] Daniel Reidenbach and Markus L. Schmid. 2010. A Polynomial Time Match Test for Large Classes of Extended Regular

Expressions. In Proceedings of the 15th International Conference on Implementation and Application of Automata, CIAA

2010, Winnipeg, MB, Canada, August 12-15, 2010. 241–250.

[36] Daniel Reidenbach and Markus L. Schmid. 2014. Patterns with bounded Treewidth. Information and Computation 239

(2014), 87–99.

[37] Markus L. Schmid. 2013. A note on the complexity of matching patterns with variables. Inform. Process. Lett. 113, 19-21

(2013), 729–733.

[38] Markus L. Schmid. 2016. Computing equality-free and repetitive string factorisations. Theoretical Computer Science

618 (2016), 42–51.

[39] Takeshi Shinohara. 1982. Polynomial Time Inference of Pattern Languages and Its Application. In Proceedings of 7th

IBM Symposium on Mathematical Foundations of Computer Science, MFCS. 191–209.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

	Abstract
	1 Introduction
	2 Basic Definitions
	3 Summary of Our Results
	4 Efficient Algorithms for the Matching Problem
	4.1 Patterns with a bounded number of repeated variables
	4.2 Non-cross patterns
	4.3 Patterns with bounded scope coincidence degree

	5 The Injective Variant of the Matching Problem
	6 Conclusions and Open Problems
	7 Acknowledgements
	References

