k-Abelian Pattern Matching

Robert Mercaş

University of Kiel

Combinatorics and Algorithmics of Strings 2014

A joint work with Thorsten Ehlers, Florin Manea, and Dirk Nowotka Words u and v over Σ are *abelian equivalent* if $|u|_a = |v|_a$ for every $a \in \Sigma$.

DEFINITION

Two words *u* and *v* are *k*-abelian equivalent:

• if
$$|u|_t = |v|_t$$
 for every word t of length at most k.

▶ if $|u|_t = |v|_t$ for every word t of length k, $\operatorname{pref}_{k-1}(u) = \operatorname{pref}_{k-1}(v)$ and $\operatorname{suff}_{k-1}(u) = \operatorname{suff}_{k-1}(v)$.

We denote this by $u \equiv_k v$.

A *k*-abelian nth power is a word $u_1u_2...u_n$, where $u_1, u_2..., u_n$ are *k*-abelian equivalent.

$$u \equiv_3 v$$

 $u = abbbaaaba, v = abaaabbba, and k = 3$

$$(u,3) = \{ (aaa,1), (aab,1), (aba,1), (abb,1), (bba,1), (bbb,1) \} = (w,3) \\ (u,2) = \{ (aa,2), (ab,2), (ba,2), (bb,2) \} = (w,2) \\ (u,1) = \{ (a,5), (b,4) \} = (w,1)$$

$$x \neq_2 v$$

 $x = aba, y = bab, and k = 2$
 $(x = 2) - \{(ab = 1), (ba = 1)\} - (x = 2)$

$$(x, 1) = \{(a, 2), (b, 1)\} \neq \{(a, 1), (b, 2)\} = (y, 2)$$

2

[Halava et al.: Local Squares, Periodicity and Finite Automata, 2011]

- 2-abelian cubes avoidable on binary alphabet, 3-abelian squares avoidable on ternary alphabet
- complexity function is somewhere between that of equality and classical abelian operation
- ▶ variations of Morse-Hedlund Theorem for *k*-abelian equivalence

For a pattern $P \in \Sigma^*$ and a text $T \in \Sigma^*$, we can identify all factors of T that are abelian equivalent to P in $\mathcal{O}(|T| + |P|)$ time.

Theorem

For a word $w \in \Sigma^*$, we can identify all factors of w that are abelian repetitions in $\mathcal{O}(|w|^2)$ time.

Tool: the #(w, k) encoding

w = aabbccaabbcc and k = 2

$\frac{7|1|8|2|9|3|10|4|12|6|11|5}{1|1|2|2|3|3|4|4|-|5|6|6}$

#(w,2) = 23456512346

Lemma

Let $w \in \Sigma^*$ be a word of length n. We can compute #(w, k) in $\mathcal{O}(n)$ time.

Lemma

Let $u,v\in\Sigma^*$ be two words of length n. If $u\equiv_k v$ for some k, then

$$u[1..k-1] = v[1..k-1], and \\ \#(u,k) \equiv_1 \#(v,k).$$

6

Lemma

Let $u, v \in \Sigma^*$ be two words of length n and k be a positive integer with $1 \le k \le n$. We can decide whether $u \equiv_k v$ in $\mathcal{O}(n)$ time.

Proof.

Construct w = u0v, and compute Suf_w and #(w, k). Set u' = #(w, k)[1..n - k + 1] and v' = #(w, k)[n + 2..2n - k + 2]. The fact that u' and v' contain exactly the same letters is equivalent to them having exactly the same multi-set of factors of length k.

Then
$$u \equiv_k u$$
 if and only if

$$u[1..k-1] = v[1..k-1], \text{ and} u' \equiv_1 v'.$$

Remark

The k-abelian pattern matching problem can be reduced to the classical abelian pattern matching problem.

Theorem

For a pattern $P \in \Sigma^*$, a text $T \in \Sigma^*$, and an integer k, we can identify all factors of T that are k-abelian equivalent to P in $\mathcal{O}(|T| + |P|)$ time.

THEOREM

For a word $w \in \Sigma^*$ and an integer k, we can identify all k-abelian repetitions in w in $\mathcal{O}(|w|^2)$ time.

Given two words of same length n, we can find the largest positive integer k such that the words are k-abelian equivalent linear time O(n).

Construct the word w = u0v, its Suf_w , and $LCPref_w$ data structures. Set u' = #(w, k)[1..n - k + 1] and v' = #(w, k)[n + 2..2n - k + 2].

Set $\ell = \min(\max_{pref}(u', v'), \max_{suff}(u', v')) + 1$. Then $k \leq \ell$.

Going through Suf_w we do $LCPref_w$ queries for the i^{th} suffix of u (in lexicographic order) and the i^{th} suffix of v. Let ℓ' be the minimum value such that two such suffixes share a common prefix of length exactly ℓ' , while both have length at least $\ell' + 1$.

Then $k = \min\{\ell', \ell\}.$

Problem

Preprocess a word $P \in \Sigma^*$ and a positive integer k such that when given a text $T \in \Sigma^*$, in letter by letter manner, to be able to answer, at each moment, queries asking whether the part of T read so far ends with a factor which is k-abelian equivalent to P or not.

Construct the #(P, k-1) and #(P, k) encodings over $\{1, \ldots, \ell_2, \ldots, \ell_1\}$.

Compute $L = \{(i, a, j) \mid 1 \le i \le \ell_1, 1 \le j \le \ell_2, a \in \Sigma, \text{ and } f_1[i]a = f_2[j]\}$, where $f_1[i](f_2[i])$ is the factor of length k - 1 (k) of P, whose position in the lexicographically ordered set of all factors of length k - 1 (k) of P is i.

Online Solution

Different implementations for L

- ▶ An $m \times \sigma$ table *M*, with M[i][a] = j if and only if $(i, a, j) \in L$.
- A hash table, using perfect hashing.
- A van Emde Boas tree associating to each *i* a pair (a, \cdot) , if this exists.

Compute for each $1 \le j \le \ell_2$ the values suf[j], $pref[j] \le \ell_1$, such that suf[j] = i if $f_2[j] = af_1[i]$ for $a \in \Sigma$, while pref[j] = i if $f_2[j] = f_1[i]a$.

If last read part of T is $\#(P', k) = j_1 \dots j_{m-k} j_{m-k+1}$ and we read letter a, then the new last part is $\#(P'', k) = j_2 \dots j_{m-k} j_{m-k+1} suf[j_{m-k+1}]a$.

- If (suf[j_{m-k+1}], a, ·) ∈ L, then use real-time abelian pattern matching between #(P", k) and #(P, k).
- If (suf[j_{m-k+1}], a, ·) ∉ L, then use real-time pattern matching between the suffix of length k − 1 of the read text and P[1..k − 1].

Given a pattern $P \in \Sigma^m$ for $|\Sigma| = \sigma$, and a positive integer k, the online k-abelian pattern matching problem can be solved in:

- $\mathcal{O}(m\sigma)$ preprocessing time, $\mathcal{O}(m\sigma)$ space, and $\mathcal{O}(1)$ query time.
- ▶ $\mathcal{O}(m \log \log m)$ preprocessing time, $\mathcal{O}(m)$ space, and $\mathcal{O}(1)$ query time.
- ▶ $\mathcal{O}(m)$ expect. preprocessing time, $\mathcal{O}(m)$ space, and $\mathcal{O}(1)$ query time.
- $\mathcal{O}(m)$ preprocessing time, $\mathcal{O}(m)$ space, and $\mathcal{O}(\log \log \sigma)$ query time.

Problem

Preprocess a word $P \in \Sigma^*$ and a positive integer k such that when given a text $T \in \Sigma^*$, in letter by letter manner, to be able to answer, at each moment, queries asking whether the part of T read so far ends with a factor which is extended-k-abelian equivalent to P or not.

$$x \neq 2 v$$

 $x = aba, y = bab, and k = 2$
 $(x, 2) = \{(ab, 1), (ba, 1)\} = (y, 2)$
 $(x, 1) = \{(a, 2), (b, 1)\} \neq \{(a, 1), (b, 2)\} = (y, 2)$
 $x \equiv 2 v$

Online Solution for extended case

Extra tools:

- ► Suffix tree for P
- Associate to a node of the suffix tree of P the factor P[i..j] iff the path from the root to that node is labelled with P[i..j].
- ▶ Suffix links (from the node with label *aX* go to the node with label *X*)
- Let N_1 be the lowest explicit ancestor of N the node for $P[i..i + \ell 1]$.
- If exists and edge labeled a = T[j+1] from N to M, then T[1..j+1] has the suffix $P[i..i+\ell-1]a$ and we update the current node to M.
- Otherwise, let N_2 be the target-node of the suffix link of N_1 . Advance along the edge leaving N_2 , and update each node we find to be the current N_2 until no longer possible. The current N_2 is the lowest explicit ancestor of the node corresponding to $P[i + 1..i + \ell - 1]$.
- Update i = i + 1 and $N = N_2$, and restart from step 2.

Given a pattern $P \in \Sigma^*$ of length n for $|\Sigma| = \sigma$, and a positive integer k, the online extended-k-abelian pattern matching problem can be solved in:

- ▶ $\mathcal{O}(m\sigma)$ preprocessing time, $\mathcal{O}(m\sigma)$ space, and $\mathcal{O}(n)$ time.
- ▶ $\mathcal{O}(m \log \log m)$ preprocessing time, $\mathcal{O}(m)$ space, and $\mathcal{O}(n)$ time.
- $\mathcal{O}(m)$ expected preprocessing time, $\mathcal{O}(m)$ space, and $\mathcal{O}(n)$ time.
- ▶ $\mathcal{O}(m)$ preprocessing time, $\mathcal{O}(m)$ space, and $\mathcal{O}(n \log \log \sigma)$ time.

Real-time solution for extended case

Idea: report only the factors of T that are extended-k-abelian equivalent to P (whenever a length k factor of P is found).

LEMMA (GAWNICLEW14)

We can preprocess a word $P \in \Sigma^*$ in $\mathcal{O}(|P| \log k)$ time and linear space such that, for each *i* and *j* with $j - i \leq k$, we can return in $\mathcal{O}(1)$ time the (explicit or implicit) node of the suffix tree of P corresponding to P[i..j].

Use a queue to add the current letter and 2 more operations:

- dequeue and check whether the current factor of *P* be extended;
- update the *P*-suffix and its representation accordingly, dequeue, and check whether the new current factor of *P* can be extended.

Enough, since not being able to extended for some length ℓ , the number of suffixes of factors of P we have to check until reaching again length ℓ equals the number of letters read between these two moments

C A U Robert Mercaș

k-Abelian Pattern Matching

16

Given a pattern $P \in \Sigma^*$ of length n for $|\Sigma| = \sigma$, and an integer k, the real-time extended-k-abelian pattern matching problem can be solved in:

- ▶ $\mathcal{O}(m(\sigma + \log k))$ preproc. time, $\mathcal{O}(m\sigma)$ space, and $\mathcal{O}(1)$ query time.
- ▶ $\mathcal{O}(m(\log(k \log m)))$ preproc. time, $\mathcal{O}(m)$ space, and $\mathcal{O}(1)$ query time.
- ▶ $\mathcal{O}(m \log k)$ expec. preproc. time, $\mathcal{O}(m)$ space, and $\mathcal{O}(1)$ query time.
- ▶ $\mathcal{O}(m \log k)$ preproc. time, $\mathcal{O}(m)$ space, and $\mathcal{O}(\log \log k)$ query time.

Idea: construct #(T, k - 1) and #(T, k) and $L = \{(i, a, j)\}$, as before.

Find a location of P[1..k-1] in T in O(k) time. Reading P[k..m] letter by letter (checking against L) we produce #(P, k). The problem is reduced to producing an index of #(T, k), useful to check efficiently whether a factor is abelian equivalent to #(P, k).

The preprocessing time for building an index for the *k*-abelian pattern matching problem is O(n) expected or $O(n \log \log n)$ deterministic time. The query time is O(n + m - k + 1).

Special thanks to Prof. Dirk Nowotka!