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Automata with non-sequential processing modes

Restarting automata [Jančar et al., 1995]

Revolving input automata [Bordihn et al., 2005]

Automata with translucent letters [Nagy and Otto, 2011]

Jumping automata [Meduna and Zemek, 2012]

(Right) One-way jumping automata [Chigahara et al., 2016]
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Jumping finite automata [Meduna and Zemek, 2012]

Presented as M = (Q,Σ, R, s, F ) (just as a regular DFA)

Process the input in arbitrary order

Can match number of letters

Accepts permutation-closed semilinear languages (incomparable to REG)
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Right one-way jumping finite automaton [Chigahara et al., 2016]

Right one-way jumping finite automaton (⟳RDFA)

Presented as M = (Q,Σ, R, s, F ) (just as a regular DFA)

Elements of R are transition rules pa → q ∈ R

Configurations of M are strings in QΣ∗
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Working

x, y ∈ Σ∗, a ∈ Σ, p,q ∈ Q and pa → q ∈ R

The right one-way jumping relation ⟳R over QΣ∗, (⟳RDFA M jumps
from configuration pxay to qyx):

pxay ⟳ qyx

if x ∈ {Σ \ Σp}∗, where

Σp = {b ∈ Σ | (p, b,p′) ∈ R for some p′ ∈ Q}
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Example

Consider the ⟳RDFA M given in the transition graph below

Accepted language is {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}

q0acbcab ⟳R q1bcabc ⟳R q2cabc ⟳R q0abc ⟳R q1bc ⟳R q2c ⟳R q0

q0

q2

q1
a

bc
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Accepting power

REG ⊊ ⟳RDFA

CF and ⟳RDFA are incomparable

⟳RDFA ⊊ CS

⟳RDFA ⊆ DTIME(n2)
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Overview

No unique minimal ⟳RDFA

1 2 1 2
b

a, b a

b

a, b

Different minimal ⟳RDFAs accepting language {w ∈ {a, b}∗ | |w|b > 0}

⟳RDFA is not closed under “anything” interesting

with End Marker added to ⟳RDFA we have closure on complement

Some subclasses admit nicer characterisations [Beier and Holzer, 2019]

Good decidability properties [Beier and Holzer, 2020]

⟳R mode studied with more general machine models: NFA, 2DFA, PDA,
LBA [Fazekas et al., 2019, Beier and Holzer, 2022, Fazekas et al., 2021]
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Mercaş One-way Jumping Automata NCMA 2024 8



Introduction Sweep Complexity Characterisation Descriptional Conclusions

Overview

No unique minimal ⟳RDFA

1 2 1 2
b

a, b a

b

a, b

Different minimal ⟳RDFAs accepting language {w ∈ {a, b}∗ | |w|b > 0}

⟳RDFA is not closed under “anything” interesting

with End Marker added to ⟳RDFA we have closure on complement

Some subclasses admit nicer characterisations [Beier and Holzer, 2019]

Good decidability properties [Beier and Holzer, 2020]

⟳R mode studied with more general machine models: NFA, 2DFA, PDA,
LBA [Fazekas et al., 2019, Beier and Holzer, 2022, Fazekas et al., 2021]
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Jumps and sweeps

A ⟳RDFA transition from pax to qy, denoted pax ⊢ qy:

(i) pax ⇒ qy, where x = y and pa → q ∈ R (sequential trans.)

(ii) pax ⟳ pxa, when a ∈ Σ \ Σp,p = q and xa = y (a jump)

w accepted by M if sw |=∗ f , and L(M) = {x ∈ Σ∗ | ∃f ∈ F : sx |=∗ f}

Deficient states: p ∈ Q is S-deficient if for every a ∈ S ⊂ Σ and any
q ∈ Q, we have pa → q /∈ R
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1 2

a

b

⟳RDFA accepting {w | |w|a = |w|b}

Sweeps:

position : 0 1 2 3 4 5 6 7

input a a a a b b b b
after sweep 1 ε a a a ε b b b
after sweep 2 ε ε a a ε ε b b
after sweep 3 ε ε ε a ε ε ε b
after sweep 4 ε ε ε ε ε ε ε ε

Computation table for a4b4
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Sweep complexity [Fazekas et al., 2022]

The sweep complexity of an automaton M is scM (n) is the maximum
number of sweeps M makes on processing inputs w ∈ L(M) of length n

SWEEP(f(n)) class of languages accepted by ⟳RDFA with
scM (n) = O(f(n))
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Starting point

When is the accepted language regular?

Theorem ( [Fazekas and Yamamura, 2016])

For any ⟳RDFA A = (Q,Σ, R, s, F ) and any constant k, the set of words
accepted by A in at most k sweeps is regular.

Conjecture

For any ⟳RDFA A = (Q,Σ, R, s, F ), the language accepted by A is regular if
and only if it has constant sweep complexity.

Previously known languages accepted by ⟳RDFA had sweep complexity
either constant or linear (which is also the upper bound)
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Questions regarding sweep complexity [Fazekas et al., 2022]

1 Is the language of each machine with ω(1) complexity non-regular?
‘YES’

2 Is there a machine with sweep complexity between constant and
linear, that is, ω(1) and o(n)? ‘NO’

3 Is there a language with sweep complexity between constant and
linear, that is, all machines accepting it have superconstant
complexity and at least one has sublinear? ‘NO’

4 Is there an upper bound in terms of sweep complexity on machines
accepting regular languages? ‘YES’

5 Are machines less complex in the case of binary alphabets? ‘YES’
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1 Is the language of each machine with ω(1) complexity non-regular?
NO

2 Is there a machine with sweep complexity between constant and
linear, that is, ω(1) and o(n)? YES

3 Is there a language with sweep complexity between constant and
linear, that is, all machines accepting it have superconstant
complexity and at least one has sublinear? YES

4 Is there an upper bound in terms of sweep complexity on machines
accepting regular languages? NO

5 Are machines less complex in the case of binary alphabets? NO
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Necessary condition for ω(1) sweep complexity

Lemma ( [Fazekas et al., 2022])

If a ⟳RDFA has superconstant sweep complexity, then it has two reachable and
co-reachable states p and q such that p is a-deficient, q is b-deficient, for some
a, b ∈ Σ with a ̸= b, and pbuav ⊢∗ qav ⊢∗ p, for some u, v ∈ Σ∗.

p

q

a

b
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Logarithmic complexity

12 3a

a

b

b

L(A) = {w ∈ {a, b}∗ | |w|a ≡ 0 mod 2, |w|b ≡ 0 mod 2}

L(A) is regular

Proposition

The sweep complexity of A is Θ(log n).
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Mercaş One-way Jumping Automata NCMA 2024 18



Introduction Sweep Complexity Characterisation Descriptional Conclusions

Logarithmic complexity

12 3a

a

b

b

L(A) = {w ∈ {a, b}∗ | |w|a ≡ 0 mod 2, |w|b ≡ 0 mod 2}

L(A) is regular

Proposition

The sweep complexity of A is Θ(log n).
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Linear complexity

A0

A1

A2

A3

B1

B3

B2

a a

bb

b

b

b

a

a

a

L(B) = {w ∈ {a, b}∗ | |w|a ≡ 1 mod 2, |w|b ≡ 1 mod 2}

L(B) is regular

Proposition

The sweep complexity of B is Θ(n).
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Mercaş One-way Jumping Automata NCMA 2024 19



Introduction Sweep Complexity Characterisation Descriptional Conclusions

Linear complexity

A0

A1

A2

A3

B1

B3

B2

a a

bb

b

b

b

a

a

a

L(B) = {w ∈ {a, b}∗ | |w|a ≡ 1 mod 2, |w|b ≡ 1 mod 2}

L(B) is regular

Proposition

The sweep complexity of B is Θ(n).
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Non-REG language with sublinear sweep complexity

1 2

3

a

bb

a

Lemma

The ⟳RDFA C accepts a non-regular language.

Lemma

The sweep complexity of C is Θ(log n).
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L(C) is not regular

Consider the morphism φ : {a, b}∗ → {a, b}∗ with φ(a) = abab, φ(b) = b

φ(ab) = ababb, φ2(ab) = ababbababbb, . . .

(By induction) the last block of b’s in φn(ab) has length n+ 1, and is
preceded by 2n blocks of a’s separated by blocks of b’s
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L(C) is not regular

φ : {a, b}∗ → {a, b}∗ with φ(a) = abab, φ(b) = b

φ(ab) = ababb, φ2(ab) = ababbababbb, . . .

1 2

3

a

bb

a

1φ(ab) = 1ababb ⇒2 3abb ⟳ a3bb ⇒ a1b ⟳ 1ab = 1φ0(ab)
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Complexity of C is Θ(log n)

C accepts φk(ab) in k + 1 sweeps and |φk(ab)| ∈ O(2k)
so sweep complexity is Ω(log n)

Within a sweep

▶ each block of a’s is fully processed if a letter is processed from them

▶ no two consecutive blocks of a can be jumped over

▶ the number of blocks of a’s is reduced by at least half
so at most O(log n) sweeps possible
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Separating complexity classes

Theorem

SWEEP(1) ⊊ SWEEP(log n).

Lemma

Every automaton which accepts Lab = {w ∈ {a, b}∗ | |w|a = |w|b} has sweep
complexity Θ(n).

Theorem

For any f : N ⇒ N with f(n) ∈ o(n) we have SWEEP(f(n)) ⊊ SWEEP(n).
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Why state complexity? [Fazekas, M., Prigioniero]

▶ one of the main features of these machines would be their size, as
compared to regular DFA

▶ we could identify a minimum equivalent DFA when the expressed
language is regular
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⟳RDFA to DFA

Theorem

There is an exponential gap in between the representation of an ⟳RDFA and
that of a DFA accepting the same regular language.

Ln = {x1x2 · · ·xk$x | xi, x ∈ {a, b}n and ∃j such that xj = x, j ∈ [k]}

A ⟳RDFA accepts Ln by jumping the prefix of the input until reaching $.
Then stores x, and then, computing the jumped prefix, it compares each
factor of length n with the string x stored in the finite control.

approach requires 2n states (to store x)

A DFA accepts Ln by storing in its finite control the set S of n-length
factors x1x2 · · ·xk and, after reading $, verifying that x is contained in S.

DFA requires double exponentially, in n, many states (to store S)
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NFA to ⟳RDFA still exponential

The Θ(2n) bound is straightforward

▶ Lower bound: classical example of n-th letter from the end being a

▶ Upper bound: follows from the fact that each DFA is an ⟳RDFA
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⟳RDFA to NFA (Σ ∈ O(n)) still exponential

1 2 3 n
a1 a2 a3 · · · an−1

a1, . . . , an−1

⟳RDFA T from [Fazekas and Yamamura, 2016]

▶ ⟳RDFA T accepts the regular language of words in which each letter
of the alphabet {a1, . . . , an−1} occurs at least once

▶ ⟳RDFA T has n states, but any NFA needs 2n−1 states to keep
track of which letters have already occurred in the input
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Mercaş One-way Jumping Automata NCMA 2024 29



Introduction Sweep Complexity Characterisation Descriptional Conclusions

⟳RDFA to NFA (|Σ| = 3) still exponential

1 2

3

a

bb

a

⟳RDFA C /∈ REG of sweep complexity Θ(log n) [Fazekas and Mercaş, 2023]

▶ L(C) ∩ Σ∗b+ = {wbn | number of blocks of a’s in w is Ω(2n)}

▶ Words in L(C) accepted in O(log n) sweeps (some Ω(logn) sweeps)

▶ Concatenate n+ 1 copies of C using a new symbol c to label the
transitions between copies
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▶ L(C) ∩ Σ∗b+ = {wbn | number of blocks of a’s in w is Ω(2n)}

▶ Words in L(C) accepted in O(log n) sweeps (some Ω(logn) sweeps)

▶ Concatenate n+ 1 copies of C using a new symbol c to label the
transitions between copies

Mercaş One-way Jumping Automata NCMA 2024 30



Introduction Sweep Complexity Characterisation Descriptional Conclusions

⟳RDFA to NFA (|Σ| = 3) still exponential

21

3

1′ 2′

3′

i1

i2

i3

a

b b

a

a

a

bb

c a

c

a

b

c

b

The resulting machine accepts K ∈ REG and
K ∩ {a, b}∗b2ncn = {wb2ncn | number of blocks of a’s in w is Ω(2n)}

An NFA accepting the language counts the a’s and compares to count
of b’s, so it needs Ω(2n) states (versus the 3(n+ 1) states of ⟳RDFA)
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What is next?

▶ Are there machines with arbitrary (constructible) sublinear
complexity (Θ(logk n) and Θ(nϵ))?

▶ Is it decidable, given a machine or language and a function f(n),
whether the machine/language has Θ(f(n)) sweep complexity?

▶ Solve the open problems regarding equivalence and regularity

▶ Nondeterminism...

▶ Smaller alphabet size for the descriptional complexity trade-offs

Thank you!

Mercaş One-way Jumping Automata NCMA 2024 33



Introduction Sweep Complexity Characterisation Descriptional Conclusions

What is next?

▶ Are there machines with arbitrary (constructible) sublinear
complexity (Θ(logk n) and Θ(nϵ))?

▶ Is it decidable, given a machine or language and a function f(n),
whether the machine/language has Θ(f(n)) sweep complexity?

▶ Solve the open problems regarding equivalence and regularity

▶ Nondeterminism...

▶ Smaller alphabet size for the descriptional complexity trade-offs

Thank you!
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Extra I

Problem

Given an ⟳RDFA A and word w, does there exist a u ∈ L(A) such that w ≤s u?

Theorem (Fazekas, Koß, Manea, M., Specht)

Given a ⟳RDFA (or DFAwtl) A and a word w it is decidable (in NP time)
whether there exists a word u ∈ L(A) such that w ≤s v?

Exponential upper bound on the length of factors between letters of the
subsequence
Done by iteratively inserting factors of bounded length (wrt number of
states) between letters in each sweep, bottom up

Theorem ([Beier and Holzer, 2020, Theorem 6])

Given a ⟳RDFA A and a word w, it is decidable in PSPACE whether there exists
a v ∈ L(A) such that (1) the word w is a prefix of v, (2) the word w is a sufix of
v, (3) the word w is a factor of v, and (4) the word w is a subsequence of v.
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Extra II

Theorem (Fazekas, Koß, Manea, M., Specht)

Given a ⟳RDFA A and a word w, both defined over a binary alphabet, it is
decidable in NP time whether there exists a word u ∈ L(A) such that w ≤s v?

Assume that there exists v ∈ L(A) with w ≤s v

For every w ∈ {a, b}k, for every v ∈ {a, b}∗ with at least 2k blocks w ≤s v

If DFA accepts words with arbitrarily many blocks, then answer YES

If not, then A has no loop with binary label
Straighten each loop with label bℓ to a path of length kℓ and analyse the
resulting machine which accepts a finite language

(reduction to finite language case)

When language accepted by A is finite, then the longest word accepted
has at most as many letters as the number of states of A,

the length of the witness v is also upper bounded by |A|
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Extra III

Problem

Given a OWJFA A and a word w, do we have for all u ∈ L(A) that w ≤s v?

Lemma ([Beier and Holzer, 2020, Lemma 14])

Let A be an ⟳RDFA and L ⊂ Σ∗ be a finite language. Then it is decidable
whether (1) L(A) ∩ L = ∅, (2) L ⊆ L(A), (3) L(A) ⊆ L; and (4) L = L(A).
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